BackgroundHeart failure with preserved left ventricular ejection fraction (HFPEF) affects about half of all patients diagnosed with heart failure. The pathophysiological aspect of this complex disease state has been extensively explored, yet it is still not fully understood. Since the sympathetic nervous system is related to the development of systolic HF, we hypothesized that an increased sympathetic nerve activation (SNA) is also related to the development of HFPEF. This review summarizes the available literature regarding the relation between HFPEF and SNA.Methods and ResultsElectronic databases and reference lists through April 2014 were searched resulting in 7722 unique articles. Three authors independently evaluated citation titles and abstracts, resulting in 77 articles reporting about the role of the sympathetic nervous system and HFPEF. Of these 77 articles, 15 were included for critical appraisal: 6 animal and 9 human studies. Based on the critical appraisal, we selected 9 articles (3 animal, 6 human) for further analysis. In all the animal studies, isoproterenol was administered to mimic an increased sympathetic activity. In human studies, different modalities for assessment of sympathetic activity were used. The studies selected for further evaluation reported a clear relation between HFPEF and SNA.ConclusionCurrent literature confirms a relation between increased SNA and HFPEF. However, current literature is not able to distinguish whether enhanced SNA results in HFPEF, or HFPEF results in enhanced SNA. The most likely setting is a vicious circle in which HFPEF and SNA sustain each other.
BackgroundIn a subpopulation of patients with essential hypertension, therapeutic targets are not met, despite the use of multiple types of medication. In this paper we describe our first experience with a novel percutaneous treatment modality using renal artery radiofrequency (RF) ablation.MethodsPatients who were resistant to at least three types of antihypertensive medical therapy (office systolic blood pressure ≥ 160 mmHg; n = 9) or who did not tolerate medication (n = 2) were selected. Between July and November 2010, a total of 11 patients received percutaneous RF treatment. Patients were followed up for 1 month after treatment. Urine and blood samples were taken to evaluate the effects on renal function and neurohumeral factors.ResultsNo periprocedural complications or adverse events during follow-up were noted. A reduction of mean office blood pressure was seen from 203/109 ± 32/19 mmHg at baseline to 178/97 ± 28/21 mmHg at 1 month follow-up (mean difference 25 ± 12 mmHg, p < 0.01). Also, we noted a significant decrease in aldosterone level (391 ± 210 pmol/L versus 250 ± 142 pmol/L; p = 0.03), while there was no decrease in plasma renin activity (190 ± 134 fmol/L/s versus 195 ± 163 fmol/L/s; p = 0.43). No change in renal function was noted.ConclusionCatheter-based renal denervation seems an attractive novel minimally invasive treatment option in patients with resistant hypertension, with a low risk of serious adverse events.
Chronic elevation of sympathetic nervous system is a key factor in metabolic syndrome. Because renal denervation (RDN) is thought to modulate sympathetic activity, we performed the Denervation of the Renal Arteries in Metabolic Syndrome (DREAMS)–study to investigate the effects of RDN on insulin sensitivity and blood pressure (BP) in patients with metabolic syndrome. Twenty-nine patients fulfilling the criteria for metabolic syndrome and who used a maximum of 1 antihypertensive or 1 antidiabetic drug or 1 of both gave informed consent and were treated by RDN. Glucose tolerance tests and 24-hour ambulatory BP measurements were performed at baseline, at 6 and 12 months of follow-up. Moreover, we performed self-monitored BP measurements at home every month. To assess sympathetic activity, we performed muscle sympathetic nerve activity and heart rate variability measurements at baseline and follow-up. The majority of the included patients was men (57%), mean body mass index was 31±5 kg/m 2 . Median insulin sensitivity as assessed by the Simple Index assessing Insulin Sensitivity oral glucose tolerance test did not change at 6- and 12-month follow-up ( P =0.60 and P =0.77, respectively). Mean 24-hour BP decreased by 6±12/5±7 mm Hg 12 months after RDN ( P =0.04/0.01). However, self-monitored BP measurements data showed no reduction over time. Measurements of sympathetic activity showed no reduction in systemic sympathetic activity. In conclusion, RDN did not lead to a significant improvement of insulin sensitivity ≤12 months after treatment. Although a significant reduction in ambulatory BP was observed in this nearly drug-naïve population, the self-monitored BP measurements data suggest that this may be explained by regression to the mean. Moreover, no effect in systemic sympathetic activity was observed.
Depending on populations studied and applied methods and definitions, the prevalence of treatment-resistant hypertension varies from 3% to 30%. 1,2 The SYMPLICITY studies [3][4][5] demonstrated that in this indication catheter-based endovascular sympathetic renal denervation (RDN) by means of low-frequency energy is feasible. It entails a 25-to 30-mm Hg decrease in office systolic blood pressure, 84% of patients achieving a decrease in office systolic blood pressure of ≥10 mm Hg with a rate of procedural adverse events <5% assessed 6 months after RDN. 4 However, as reviewedAbstract-Based on the SYMPLICITY studies and CE (Conformité Européenne) certification, renal denervation is currently applied as a novel treatment of resistant hypertension in Europe. However, information on the proportion of patients with resistant hypertension qualifying for renal denervation after a thorough work-up and treatment adjustment remains scarce. The aim of this study was to investigate the proportion of patients eligible for renal denervation and the reasons for noneligibility at 11 expert centers participating in the European Network COordinating Research on renal Denervation in treatment-resistant hypertension (ENCOReD). The analysis included 731 patients. Age averaged 61.6 years, office blood pressure at screening was 177/96 mm Hg, and the number of blood pressure-lowering drugs taken was 4.1. Specialists referred 75.6% of patients. The proportion of patients eligible for renal denervation according to the SYMPLICITY HTN-2 criteria and each center's criteria was 42.5% (95% confidence interval, 38.0%-47.0%) and 39.7% (36.2%-43.2%), respectively. The main reasons of noneligibility were normalization of blood pressure after treatment adjustment (46.9%), unsuitable renal arterial anatomy (17.0%), and previously undetected secondary causes of hypertension (11.1%). In conclusion, after careful screening and treatment adjustment at hypertension expert centers, only ≈40% of patients referred for renal denervation, mostly by specialists, were eligible for the procedure. The most frequent cause of ineligibility (approximately half of cases) was blood pressure normalization after treatment adjustment by a hypertension specialist. Accordingly, several national and international consensus papers 16,17 have proposed guidelines for evaluation and management of patients with resistant hypertension before considering RDN. The proportion of patients with truly resistant hypertension eligible for RDN and the reasons of noneligibility after thorough screening and optimization of drug treatment in expert centers remain elusive. In this study, we reviewed the reasons for noneligibility at 11 hypertension expert centers performing RDN for treatment-resistant hypertension and collaborating within the European Network COordinating research on Renal Denervation (ENCOReD). 8 Methods PatientsWe performed systematic reviews of the literature published elsewhere 6,7 and identified ENCOReD centers engaging in RDN. At the fourth ENCOReD network meeting, held...
AimIncreasing evidence suggests an important role for hyperactivation of the sympathetic nervous system (SNS) in the clinical phenomena of heart failure with normal LVEF (HFNEF) and hypertension. Moreover, the level of renal sympathetic activation is directly related to the severity of heart failure. Since percutaneous renal denervation (pRDN) has been shown to be effective in modulating elevated SNS activity in patients with hypertension, it can be hypothesized that pRDN has a positive effect on HFNEF. The DIASTOLE trial will investigate whether renal sympathetic denervation influences parameters of HFNEF. MethodsDIASTOLE is a multicentre, randomized controlled trial. Sixty patients, diagnosed with HFNEF and treated for hypertension, will be randomly allocated in a 1:1 ratio to undergo renal denervation on top of medical treatment (n ¼ 30) or to maintain medical treatment alone (n ¼ 30). The primary objective is to investigate the efficacy of pRDN by means of pulsed wave Doppler echocardiographic parameters. Secondary objectives include safety of pRDN and a comparison of changes in the following parameters after pRDN: LV mass, LV volume, LVEF, and left atrial volume as determined by magnetic resonance imaging. Also, MIBG (metaiodobenzylguanidine) uptake and washout, BNP levels, blood pressure, heart rate variability, exercise capacity, and quality of life will be assessed.Perspective DIASTOLE is a randomized controlled trial evaluating renal denervation as a treatment option for HFNEF. The results of the current trial will provide important information regarding the treatment of HFNEF, and therefore may have major impact on future therapeutic strategies. Trail registration NCT01583881--
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.