The juvenile form of neuronal ceroid Lipofuscinosis (JNCL) is the most common form within this group of rare lysosomal storage disorders, causing pediatric neurodegeneration. The genetic disorder, which is caused by recessive mutations affecting the CLN3 gene, features progressive vision loss, cognitive and motor decline and other psychiatric conditions, seizure episodes, leading to premature death. Animal models have traditionally aid the understanding of the disease mechanisms and pathology and are very relevant for biomarker research and therapeutic testing. Nevertheless, there is a need for establishing reliable and predictive human cellular models to study the disease. Since patient material, particularly from children, is scarce and difficult to obtain, we generated an engineered a CLN3-mutant isogenic human induced pluripotent stem cell (hiPSC) line carrying the c.1054C → T pathologic variant, using state of the art CRISPR/Cas9 technology. To prove the suitability of the isogenic pair to model JNCL, we screened for disease-specific phenotypes in non-neuronal two-dimensional cell culture models as well as in cerebral brain organoids. Our data demonstrates that the sole introduction of the pathogenic variant gives rise to classical hallmarks of JNCL in vitro. Additionally, we discovered an alteration of the splicing caused by this particular mutation. Next, we derived cerebral organoids and used them as a neurodevelopmental model to study the particular effects of the CLN3Q352X mutation during brain formation in the disease context. About half of the mutation -carrying cerebral organoids completely failed to develop normally. The other half, which escaped this severe defect were used for the analysis of more subtle alterations. In these escapers, whole-transcriptome analysis demonstrated early disease signatures, affecting pathways related to development, corticogenesis and synapses. Complementary metabolomics analysis confirmed decreased levels of cerebral tissue metabolites, some particularly relevant for synapse formation and neurotransmission, such as gamma-amino butyric acid (GABA). Our data suggests that a mutation in CLN3 severely affects brain development. Furthermore, before disease onset, disease -associated neurodevelopmental changes, particular concerning synapse formation and function, occur.
Our study implicates a RAB11 pathway in the aetiology of the TRAPPC2L disorder and has implications for other TRAPP-related disorders with similar phenotypes.
BackgroundCLN3 disease is a major cause of childhood neurodegeneration. Onset of visual failure around 6 years of age is thought to precede cognitive deterioration by a few years, but casuistic reports question this paradigm. The aim of our study is to delineate timing of cognitive decline in CLN3 disease.MethodsEarly neurocognitive functioning in CLN3 disease was analyzed using age at onset of visual and cognitive decline and IQ scores from literature-derived patient descriptions, supplemented with IQ scores and school history from a retrospective referral center cohort. We analyzed protracted and classical CLN3 separately and added a control group of patients diagnosed with juvenile onset macular degeneration (early onset Stargardt disease) to control for possible effects of rapid vision loss on neurocognitive functioning.ResultsOnset of cognitive decline at a mean age of 6.8 years (range 2–13 years, n = 19) paralleled onset of visual deterioration at a mean age of 6.4 years (range 4–9 years, n = 81) as supported by an early decline in IQ scores in classical CLN3 disease. Onset and course of vision loss was similar in patients with protracted CLN3. The decreased IQ levels at diagnosis (mean 68.4, range 57–79, n = 9) in the referral cohort were consistently associated with an aberrant early school history contrasting normal school history and cognition in Stargardt disease patients.ConclusionsCognitive dysfunction is universally present around diagnosis in classical CLN3 disease.Electronic supplementary materialThe online version of this article (10.1007/s10545-018-0143-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.