The experience of pregnancy plus lactation produces long-term enhancements in maternal behavior as well as reduced secretion of prolactin, a key hormone for the initial establishment of maternal care. Given that prolactin acts centrally to induce maternal care as well as regulate its own secretion, we tested whether prolactin receptors in brain regions known to regulate behavioral and neuroendocrine processes were up-regulated and more responsive to prolactin in reproductively experienced females. Diestrous primiparous (8 wk after weaning) and age-matched virgin rats were treated with 250 microg ovine prolactin sc or vehicle and the brains collected 2 h later for measurement of mRNA for genes involved in prolactin signaling. Reproductively experienced rats had lower serum prolactin concentrations, compared with virgin rats, suggesting enhanced prolactin feedback on the arcuate neurons regulating prolactin secretion. In the medial preoptic area and arcuate nucleus (regions involved in regulating maternal behavior and prolactin secretion, respectively), the level of long-form prolactin receptor mRNA was higher in primiparous rats, and prolactin treatment induced a further increase in receptor expression in these animals. In the same regions, suppressors of cytokine signaling-1 and -3 mRNA levels were also markedly increased after prolactin treatment in reproductively experienced but not virgin rats. These results support the idea that reproductive experience increases central prolactin responsiveness. The induction of prolactin receptors and enhanced prolactin responsiveness as a result of pregnancy and lactation may help account for the retention of maternal behavior and shifts in prolactin secretion in reproductively experienced females.
Since few leukemia-associated antigens (LAA) are characterized for acute myeloid leukemia (AML), apoptotic tumor cells constitute an attractive LAA source for DC-based vaccines, as they contain both characterized and unknown LAA. However, loading DC with apoptotic tumor cells may interfere with DC function. Previously, it was shown in mice that apoptotic blebs induce DC maturation, whereas apoptotic cell remnants (ACR) do not. Here, we analyzed human monocyte-derived DC (MoDC) functionality in vitro, after ingesting either allogeneic AML-derived ACR or blebs. We show that MoDC ingest blebs to a higher extent and are superior in migrating toward CCL19, as compared to ACR-loaded MoDC. Although MoDC cytokine production was unaffected, co-culturing bleb-loaded MoDC with T cells led to an increased T cell proliferation and IFNγ production. Moreover, antigen-specific CD8(+) T cells frequencies increased to 0.63 % by priming with bleb-loaded MoDC, compared to 0.16 % when primed with ACR-loaded MoDC. Importantly, CD8(+) T cells primed by bleb-loaded MoDC recognized their specific epitope at one to two orders of magnitude lower concentrations compared to ACR-loaded MoDC. In conclusion, superior ingestion efficiency and migration, combined with favorable T cell cytokine release and CD8(+) T cell priming ability and avidity, point to blebs as the preferred component of apoptotic leukemic cells for LAA loading of DC for the immunotherapy of AML.
Results: Cell lineage-defining markers and SBB staining were analyzed retrospectively in a cohort of 198 patients who presented with acute leukemia. Eight patients were positive for SBB (>3%), but were considered negative for cMPO (<10%); six patients were negative for SBB ( 3%) and positive for cMPO (!10%) staining. In six patients, we found 10-20% cMPO positive leukemic cells. Five of these cases were SBB positive; the sixth patient showed a clear myeloid phenotype without positivity of any lymphoid marker. Using a 10% cut-off instead of 20% would have changed diagnosis from ALL into MPAL in two patients; both cases were SBB positive by morphology.Conclusion: We conclude that a 10% cut-off is a secure lower limit for cMPO expression and can be used independently from SBB expression. V C 2013 International Clinical Cytometry Society
Purpose: Classification of acute leukemia is based on the commitment of leukemic cells to the myeloid or the lymphoid lineage. However, a small percentage of acute leukemia cases lack straightforward immunophenotypical lineage commitment. These leukemias of ambiguous lineage represent a heterogeneous category of acute leukemia that cannot be classified as either acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL). The lack of clear classification of acute leukemias of ambiguous lineage as either AML or ALL is a hurdle in treatment choice for these patients.Experimental Design: Here, we compared the microRNA (miRNA) expression profiles of 17 cases with acute leukemia of ambiguous lineage and 16 cases of AML, B-cell acute lymphoid leukemia (B-ALL), and T-cell acute lymphoid leukemia (T-ALL).Results: We show that leukemias of ambiguous lineage do not segregate as a separate entity but exhibit miRNA expression profiles similar to AML, B-ALL, or T-ALL. We show that by using only 5 of the most lineagediscriminative miRNAs, we are able to define acute leukemia of ambiguous lineage as either AML or ALL.Conclusion: Our results indicate the presence of a myeloid or lymphoid lineage-specific genotype, as reflected by miRNA expression, in these acute leukemias despite their ambiguous immunophenotype. miRNA-based classification of acute leukemia of ambiguous lineage might be of additional value in therapeutic decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.