Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors—Gata.a, β-catenin, and Zic-r.a—are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domains. First, only β-catenin and its effector transcription factor, Tcf7, are required to establish the vegetal hemisphere domain. Second, genes specifically expressed in the posterior vegetal domain have additional repressive cis-elements that antagonize the activity of β-catenin/Tcf7. This antagonizing activity is suppressed by Zic-r.a, which is specifically localized in the posterior vegetal domain and binds to DNA indirectly through the interaction with Tcf7. Third, Gata.a directs specific gene expression in the animal hemisphere domain, because β-catenin/Tcf7 weakens the Gata.a-binding activity for target sites through a physical interaction in the vegetal cells. Thus, repressive regulation through protein-protein interactions among the maternal transcription factors is essential to establish the first distinct domains of gene expression in the chordate embryo.
Summary Transcription factors of the TCF family are key mediators of the Wnt/β-catenin pathway. TCF usually activates transcription on cis-regulatory elements containing TCF binding sites when the pathway is active and represses transcription when the pathway is inactive. However, some direct targets display an opposite regulation (activated by TCF in the absence of Wnt) but the mechanism behind this atypical regulation remains poorly characterized. Here we use the cis-regulatory region of an opposite target gene, ttx-3, to dissect the mechanism of this atypical regulation. Using a combination of genetic, molecular and biochemical experiments we establish that, in the absence of Wnt pathway activation, TCF activates ttx-3 expression via a Zic binding site by forming a complex with a Zic transcription factor. This mechanism is later reinforced by specific bHLH factors. This study reveals an atypical mode of action for TCF that may apply to other binary decisions mediated by Wnt signaling.
Simple model organisms are instrumental for in vivo studies of developmental and cellular differentiation processes. Currently, the evolutionary distance to man of conventional invertebrate model systems and the complexity of genomes in vertebrates are critical challenges to modeling human normal and pathological conditions. The chordate Ciona intestinalis is an invertebrate chordate that emerged from a common ancestor with the vertebrates and may represent features at the interface between invertebrates and vertebrates. A common body plan with much simpler cellular and genomic composition should unveil gene regulatory network (GRN) links and functional genomics readouts explaining phenomena in the vertebrate condition. The compact genome of Ciona, a fixed embryonic lineage with few divisions and large cells, combined with versatile community tools foster efficient gene functional analyses in this organism. Here, we present several crucial methods for this promising model organism, which belongs to the closest sister group to vertebrates. We present protocols for transient transgenesis by electroporation, along with microinjection-mediated gene knockdown, which together provide the means to study gene function and genomic regulatory elements. We extend our protocols to provide information on how community databases are utilized for in silico design of gene regulatory or gene functional experiments. An example study demonstrates how novel information can be gained on the interplay, and its quantification, of selected neural factors conserved between Ciona and man. Furthermore, we show examples of differential subcellular localization in embryonic cells, following DNA electroporation in Ciona zygotes. Finally, we discuss the potential of these protocols to be adapted for tissue specific gene interference with emerging gene editing methods. The in vivo approaches in Ciona overcome major shortcomings of classical model organisms in the quest of unraveling conserved mechanisms in the chordate developmental program, relevant to stem cell research, drug discovery, and subsequent clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.