In this work we present the outlines of possible experiments for dielectric laser acceleration (DLA) of ultra-short relativistic electron bunches produced by the ARES linac, currently under construction at the SINBAD facility (DESY Hamburg). The experiments are to be performed as part of the Accelerator on a Chip International Program (ACHIP), funded by the Gordon and Betty Moore Foundation. At SINBAD we plan to test the acceleration of already preaccelerated relativistic electron bunches in laser-illuminated dielectric grating structures. We present outlines of both the acceleration of ultra-short single bunches, as well as the option to accelerate phase-synchronous sub-fs microbunch trains. Here the electron bunch is conditioned prior to the injection by interaction with an external laser field in an undulator. This generates a sinusoidal energy modulation that is transformed into periodic microbunches in a subsequent chicane. The phase synchronization is achieved by driving both the modulation process and the DLA with the same laser pulse. In addition to the conceptual layouts and plans of the experiments we present start-to-end simulation results for different ARES working points.
We present a status update on the dedicated R&D facility SINBAD which is currently under construction at DESY. The facility will host multiple independent experiments on the acceleration of ultra-short electron bunches and novel, high gradient acceleration methods. The first experiment is the ARES-experiment with a normal conducting 100 MeV S-band linac at its core. We present the objectives of this experiment ranging from the study of compression techniques to sub-fs level to its application as injector for various advanced acceleration schemes e.g. the plans to use ARES as a test-site for DLA experiments in the context of the ACHIP collaboration. The time-line including the planned extension with laser driven plasma-wakefield acceleration is presented. The second initial experiment is AXSIS which aims to accelerate fs-electron bunches to 15 MeV in a THz driven dielectric structure and subsequently create X-rays by inverse Compton scattering.
The accelerator R&D facility SINBAD (Short Innovative Bunches and Accelerators at DESY) will drive multiple independent experiments in the fields of production of ultra-short electron bunches and tests of advanced high gradient acceleration concepts.
The SINBAD-ARES (Accelerator Research Experiment at SINBAD) linac has been designed to allow the production of high brightness ultra-short electron bunches with excellent arrival-time stability. The accelerator will be used to study experimentally the optimization of the brightness for fs long electron bunches. Such electron bunches, with tunable characteristics, will be then injected into novel accelerators realized in the context of the ATHENA project, the ACHIP international collaboration and the ARIES program. In this paper we describe the principal characteristics of the linac design, we underline the technical challenges connected to the production and characterization of fs bunches and we report on the status of the installation and commissioning.
Dielectric Laser Acceleration (DLA) achieves the highest gradients among structure-based electron accelerators. The use of dielectrics increases the breakdown field limit, and thus the achievable gradient, by a factor of at least 10 in comparison to metals. Experimental demonstrations of DLA in 2013 led to the Accelerator on a Chip International Program (ACHIP), funded by the Gordon and Betty Moore Foundation. In ACHIP, our main goal is to build an accelerator on a silicon chip, which can accelerate electrons from below 100 keV to above 1 MeV with a gradient of at least 100 MeV/m. For stable acceleration on the chip, magnet-only focusing techniques are insufficient to compensate the strong acceleration defocusing. Thus, spatial harmonic and Alternating Phase Focusing (APF) laser-based focusing techniques have been developed. We have also developed the simplified symplectic tracking code DLAtrack6D, which makes use of the periodicity and applies only one kick per DLA cell, which is calculated by the Fourier coefficient of the synchronous spatial harmonic. Due to coupling, the Fourier coefficients of neighboring cells are not entirely independent and a field flatness optimization (similarly as in multi-cell cavities) needs to be performed. The simulation of the entire accelerator on a chip by a Particle In Cell (PIC) code is possible, but impractical for optimization purposes. Finally, we have also outlined the treatment of wake field effects in attosecond bunches in the grating within DLAtrack6D, where the wake function is computed by an external solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.