Abstract. Riming, i.e., the accretion and freezing of supercooled liquid water (SLW) on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest; however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based, zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka- and W-band cloud radar and in situ observations of snowfall by a Precipitation Imaging Package from which the rime mass fraction (FRPIP) is retrieved. ANNs are trained separately either on the Ka-band radar or the W-band radar data set to predict the rime fraction FRANN. We focus on two configurations of input variables. ANN 1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width – SEW), and the skewness as input features. ANN 2 only uses Ze, SEW, and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (FRANN > 0.7) and yield low values (FRANN ≤ 0.4) for unrimed snow. In general, the predictions of ANN 1 and 2 are very similar, advocating the capability of predicting riming without the use of MDV. The predictions of both ANNs for a wintertime convective cloud fit with coinciding in situ observations extremely well, suggesting the possibility to predict riming even within convective systems. Application of ANN 2 to an orographic case yields high FRANN values coinciding with observations of solid graupel particles at the ground.
Abstract. Detection of liquid-containing cloud layers in thick mixed-phase clouds or multi-layer cloud situations from ground-based remote-sensing instruments still poses observational challenges, yet improvements are crucial since the existence of multi-layer liquid layers in mixed-phase cloud situations influences cloud radiative effects, cloud lifetime, and precipitation formation processes. Hydrometeor target classifications such as from Cloudnet that require a lidar signal for the classification of liquid are limited to the maximum height of lidar signal penetration and thus often lead to underestimations of liquid-containing cloud layers. Here we evaluate the Cloudnet liquid detection against the approach of Luke et al. (2010) which extracts morphological features in cloud-penetrating cloud radar Doppler spectra measurements in an artificial neural network (ANN) approach to classify liquid beyond full lidar signal attenuation based on the simulation of the two lidar parameters particle backscatter coefficient and particle depolarization ratio. We show that the ANN of Luke et al. (2010) which was trained under Arctic conditions can successfully be applied to observations at the mid-latitudes obtained during the 7-week-long ACCEPT field experiment in Cabauw, the Netherlands, in 2014. In a sensitivity study covering the whole duration of the ACCEPT campaign, different liquid-detection thresholds for ANN-predicted lidar variables are applied and evaluated against the Cloudnet target classification. Independent validation of the liquid mask from the standard Cloudnet target classification against the ANN-based technique is realized by comparisons to observations of microwave radiometer liquid-water path, ceilometer liquid-layer base altitude, and radiosonde relative humidity. In addition, a case-study comparison against the cloud feature mask detected by the space-borne lidar aboard the CALIPSO satellite is presented. Three conclusions were drawn from the investigation. First, it was found that the threshold selection criteria of liquid-related lidar backscatter and depolarization alone control the liquid detection considerably. Second, all threshold values used in the ANN framework were found to outperform the Cloudnet target classification for deep or multi-layer cloud situations where the lidar signal is fully attenuated within low liquid layers and the cloud radar is able to detect the microphysical fingerprint of liquid in higher cloud layers. Third, if lidar data are available, Cloudnet is at least as good as the ANN. The times when Cloudnet outperforms the ANN in liquid detections are often associated with situations where cloud dynamics smear the imprint of cloud microphysics on the radar Doppler spectra.
Abstract. In mixed-phase clouds, the variable mass ratio between liquid water and ice as well as the spatial distribution within the cloud plays an important role in cloud lifetime, precipitation processes, and the radiation budget. Data sets of vertically pointing Doppler cloud radars and lidars provide insights into cloud properties at high temporal and spatial resolution. Cloud radars are able to penetrate multiple liquid layers and can potentially be used to expand the identification of cloud phase to the entire vertical column beyond the lidar signal attenuation height, by exploiting morphological features in cloud radar Doppler spectra that relate to the existence of supercooled liquid. We present VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn), a retrieval based on deep convolutional neural networks (CNNs) mapping radar Doppler spectra to the probability of the presence of cloud droplets (CD). The training of the CNN was realized using the Cloudnet processing suite as supervisor. Once trained, VOODOO yields the probability for CD directly at Cloudnet grid resolution. Long-term predictions of 18 months in total from two mid-latitudinal locations, i.e., Punta Arenas, Chile (53.1∘ S, 70.9∘ W), in the Southern Hemisphere and Leipzig, Germany (51.3∘ N, 12.4∘ E), in the Northern Hemisphere, are evaluated. Temporal and spatial agreement in cloud-droplet-bearing pixels is found for the Cloudnet classification to the VOODOO prediction. Two suitable case studies were selected, where stratiform, multi-layer, and deep mixed-phase clouds were observed. Performance analysis of VOODOO via classification-evaluating metrics reveals precision > 0.7, recall ≈ 0.7, and accuracy ≈ 0.8. Additionally, independent measurements of liquid water path (LWP) retrieved by a collocated microwave radiometer (MWR) are correlated to the adiabatic LWP, which is estimated using the temporal and spatial locations of cloud droplets from VOODOO and Cloudnet in connection with a cloud parcel model. This comparison resulted in stronger correlation for VOODOO (≈ 0.45) compared to Cloudnet (≈ 0.22) and indicates the availability of VOODOO to identify CD beyond lidar attenuation. Furthermore, the long-term statistics for 18 months of observations are presented, analyzing the performance as a function of MWR–LWP and confirming VOODOO's ability to identify cloud droplets reliably for clouds with LWP > 100 g m−2. The influence of turbulence on the predictive performance of VOODOO was also analyzed and found to be minor. A synergy of the novel approach VOODOO and Cloudnet would complement each other perfectly and is planned to be incorporated into the Cloudnet algorithm chain in the near future.
Abstract. Riming, i.e. the accretion and freezing of SLW on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest, however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka-band cloud radar and in-situ observations of snowfall. We focus on two configurations of input variables: ANN #1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width; SEW), and the skewness as input features. ANN #2 only uses Ze, SEW and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (riming index = 1) and yield low values (riming index ≤ 0.4) for unrimed snow. In general, the predictions of ANN #1 and ANN #2 are very similar, advocating the capability to predict riming without the use of MDV. It is demonstrated that both ANN setups are able to generalize to W-band radar data. The predictions of both ANNs for a wintertime convective cloud fit coinciding in-situ observations extremely well, suggesting the possibility to predict riming even within convective systems. Application of ANN #2 to an orographic case yields high riming index values coinciding with observations of solid graupel particles at the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.