We perform nonadiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory (DFT) is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Focusing on a specific temperature and density (3.5 eV, 5.2 g/cm 3), we report on differences in the dynamic structure factor and dispersion relation across a variety of adiabatic and nonadiabatic techniques. We find the dispersion relation produced with EFF is in close agreement with the more robust and adiabatic Kohn-Sham DFT.
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.
Warm dense matter is a material state in the region of parameter space connecting condensed matter to classical plasma physics. In this intermediate regime, we investigate the significance of non-adiabatic electron-ion interactions upon ion dynamics. To disentangle non-adiabatic from adiabatic electron-ion interactions, we compare the ion self-diffusion coefficient from the non-adiabatic electron force field computational model with an adiabatic, classical molecular dynamics simulation. A classical pair potential developed through a force-matching algorithm ensures the only difference between the models is due to the electronic inertia. We implement this new method to characterize non-adiabatic effects on the self-diffusion of warm dense hydrogen over a wide range of temperatures and densities. Ultimately we show that the impact of non-adiabatic effects is negligible for equilibrium ion dynamics in warm dense hydrogen.
This article is part of the theme issue ‘Dynamic and transient processes in warm dense matter’.
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool to study dynamical processes in warm dense matter beyond the Born-Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigate three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examine each of these approximations in atomic and molecular hydrogen in addition to a dense hydrogen plasma. We find that the biggest improvement to WPMD comes from combining a two Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we find that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.