High-resolution chronostratigraphy of the terrestrial Cretaceous-PaleogeneEmail alerting services articles cite this article to receive free e-mail alerts when new www.gsapubs.org/cgi/alerts click
SubscribeAmerica Bulletin to subscribe to Geological Society of www.gsapubs.org/subscriptions/ click
Permission requestto contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click official positions of the Society. citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect presentation of diverse opinions and positions by scientists worldwide, regardless of their race, includes a reference to the article's full citation. GSA provides this and other forums for the the abstracts only of their articles on their own or their organization's Web site providing the posting to further education and science. This file may not be posted to any Web site, but authors may post works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent their employment. Individual scientists are hereby granted permission, without fees or furtherCopyright not claimed on content prepared wholly by U.S. government employees within scope of Notes articles must include the digital object identifier (DOIs) and date of initial publication.
The mass extinction at the Cretaceous-Paleogene boundary marks one of the most important biotic turnover events in Earth history. Yet, despite decades of study, the causes of the Cretaceous-Paleogene boundary crises remain under debate. An important tool that has the capacity to greatly improve our understanding of the events around the Cretaceous-Paleogene boundary is the geomagnetic polarity time scale (GPTS). The GPTS is used for age control in numerous Cretaceous-Paleogene boundary studies, including the timing of Deccan Traps volcanism, a majority of studies in marine sections, and studies on climate and ecological change across the Cretaceous-Paleogene boundary. The current calibration of the GPTS for circum-Cretaceous-Paleogene boundary polarity chrons (C30n-C28n) from the Geologic Time Scale draws heavily on astronomical tuning and uses a 40 Ar/ 39 Ar age for the Cretaceous-Paleogene boundary as a tie point that has since been shown to be 200 ka too old. Furthermore, complex sedimentation has been recorded in marine sections immediately following the Cretaceous-Paleogene boundary, which can possibly obscure orbital signals and complicate cyclostratigraphic interpretation. An independent test of the cyclostratigraphy for this time period is imperative for confidence in the astronomical time scale. Further, polarity reversal ages given in the GPTS do not include uncertainty estimates, making them unsuitable for quanti-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.