Intravenous nicotine maintained substantial responding on the drug-reinforced lever with a limited-access, fixed-ratio 5 schedule of self-administration. Responding demonstrated the expected pharmacological sensitivity; it was dose-dependently reduced by pre-session treatment with either nicotine or mecamylamine but not with hexamethonium. In addition, responding was dependent on the size of the unit dose, with maximum values occurring at 0.01 and 0.03 mg/kg/infusion. Self-administration behavior decreased at doses both above and below these, and extinction followed the substitution of saline for nicotine. Total session drug intake increased with unit dose up to a maximal value of approximately 0.5 mg/kg at 0.03 mg/kg/infusion, but did not increase further at the 0.06 mg/kg/infusion dose. A decrease in the time-out duration at the dose of 0.03 mg/kg/infusion also did not change the total session intake of nicotine. It is suggested that nicotine intake is controlled both by the total amount of drug obtained and by the magnitude of the unit dose. These results demonstrate that intravenous nicotine can maintain substantial self-administration behavior in rodents.
Rats were trained to self-administer nicotine on a fixed-ratio schedule of reinforcement. Infusion of the nicotinic antagonist chlorisondamine into the cerebral ventricles produced a sustained reduction in nicotine self-administration compared to vehicle-treated controls. Lesions of the mesolimbic dopamine system were produced by microinfusion of 6-hydroxydopamine into the nucleus accumbens. Following production of the lesions, nicotine self-administration was markedly reduced for the 3-week test period; motor impairment did not appear to be responsible. Post mortem analysis of brain tissue showed that the lesion produced a pronounced decrease in dopamine content of the nucleus accumbens and the olfactory tubercle, and a small depletion in the striatum. These data demonstrate that the reinforcing effects of nicotine occur within the central nervous system, and that the mesolimbic dopamine projection plays an important role in these effects.
Nicotine addiction is a complex behavioral phenomenon comprising effects on several neural systems. Recent studies have expanded initial observations that the actions of nicotine on dopaminergic systems increase dopaminergic activity and release, leading to nicotine-induced reinforcement. Indeed, the actions of nicotine on many systems, including brainstem cholinergic, GABAergic, noradrenergic, and serotonergic nuclei, may help to mediate nicotine effects related to addiction. Furthermore, studies of mice lacking nicotinic acetylcholine receptor subunits or expressing supersensitive forms of these subunits have begun to tie together the molecular, neurochemical, and behavioral effects of nicotine. The use of multiple techniques by many laboratories provides optimism that the field is advancing toward elucidating the basic mechanisms of nicotine dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.