Ultrafine particle number and respirable particle mass concentrations were measured throughout an automotive grey iron foundry during winter, spring and summer using a particle concentration mapping procedure. Substantial temporal and spatial variability was observed in all seasons and attributed, in part, to the batch nature of operations, process emission variability and frequent work interruptions. The need for fine mapping grids was demonstrated, where elevations in particle concentrations were highly localized. Ultrafine particle concentrations were generally greatest during winter when incoming make-up air was heated with direct fire, natural gas burners. Make-up air drawn from roof level had elevated respirable mass and ultrafine number concentrations above ambient outdoor levels, suggesting inadvertent recirculation of foundry process emissions. Elevated respirable mass concentrations were highly localized on occasions (e.g. abrasive blasting and grinding), depended on the area within the facility where measurements were obtained, but were largely unaffected by season. Particle sources were further characterized by measuring their respective number and mass concentrations by particle size. Sources that contributed to ultrafine particles included process-specific sources (e.g. melting and pouring operations), and non-process sources (e.g. direct fire natural gas heating units, a liquid propane-fuelled sweeper and cigarette smoking) were additionally identified.
This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.
Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by machining operations had number size distributions modes in the 0.023 microm to 0.1 microm range. However, multiple modes in the mass size distributions estimated from OPC measurements occurred in the 2-20 microm range. Although elevated, very fine particle concentrations and respirable mass concentrations were both associated with poorly enclosed machining operations; the operation of the direct-fire natural gas heaters resulted in the greatest very fine particle concentrations without elevating the respirable mass concentration. These results suggest that respirable mass concentration may not be an adequate indicator for very fine particle exposure.
Because nanomaterials are thought to be more biologically active than their larger parent compounds, careful control of exposures to nanomaterials is recommended. Field studies were conducted at three sites to develop information about the effectiveness of control measures including process changes, a downflow room, a ventilated enclosure, and an enclosed reactor. Aerosol mass and number concentrations were measured during specific operations with a photometer and an electrical mobility particle sizer to provide concentration measurements across a broad range of sizes (from 5.6 nm to 30 μm). At site A, the dust exposure and during product harvesting was eliminated by implementing a wait time of 30 minutes following process completion. And, the dust exposure attributed to process tank cleaning was reduced from 0.7 to 0.2 mg/m3 by operating the available process ventilation during this task. At site B, a ventilated enclosure was used to control dust generated by the manual weigh-out and manipulation of powdered nanomaterials inside of a downflow room. Dust exposures were at room background (under 0.04 mg/m3 and 500 particles/cm3) during these tasks however, manipulations conducted outside of the enclosure were correlated with a transient increase in concentration measured at the source. At site C, a digitally controlled reactor was used to produce aligned carbon nanotubes. This reactor was a closed system and the ventilation functioned as a redundant control measure. Process emissions were well controlled by this system with the exception of increased concentrations measured during the unloading the product. However, this emission source could be easily controlled through increasing cabinet ventilation. The identification and adoption of effective control technologies is an important first step in reducing the risk associated with worker exposure to engineered nanoparticles. Properly designing and evaluating the effectiveness of these controls is a key component in a comprehensive health and safety program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.