Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc 5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc 5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc 5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc 5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. INTRODUCTIONThe myosin molecular motor of striated muscle is a hexameric molecule composed of two myosin heavy chains (MHCs) and four light chains. The N-terminal globular motor domain is a product inhibited ATPase comprised of several communicating domains and functional units (reviewed by Holmes, 1999, 2005;. Alterations to the various domains dramatically affect the biochemical and mechanical properties of the motor in vitro, and mutations that diminish or enhance the molecular performance of myosin in vivo are associated with the pathogenesis of both skeletal and cardiac myopathies (reviewed by Sellers, 1999;Redowicz, 2002;Oldfors et al., 2004;Chang and Potter, 2005;Laing and Nowak, 2005;Tardiff, 2005;Oldfors, 2007). Central to an understanding of myosinbased myopathies is a fundamental appreciation for how depressed or enhanced molecular motor function differentially affects diverse striated muscles.Among the communicating functional units of myosin is the recently described transducer region (Coureux et al., 2004). Myosin V crystal structures reveal the transducer's central location within the motor domain near the nucleotide binding site. The transducer includes the last three strands of a seven-stranded -sheet, which undergoes distortion essential for rearrangements within the nucleotide pocket during the ATPase cycle, and the loops an...
By comparing the structure of wild-type and mutant muscle myosin heavy chain (MHC) genes of Drosophila melanogaster, we have identified the defect in the homozygous-viable, flightless mutant Mhc 10. The mutation is within the 3' splice acceptor of an alternative exon (exon 15a) that encodes the central region of the MHC hinge. The splice acceptor defect prevents the accumulation of mRNAs containing exon 15a, whereas transcripts with a divergent copy of this exon (exon 15b) are unaffected by the mutation. In situ hybridization and Northern blot analysis of wild-type organisms reveals that exon 15b is used in larval MHCs, whereas exons 15a and/or 15b are used in adult tissues. Because Mhc ~~ mutants fail to accumulate transcripts encoding MHC protein with hinge region a, analysis of their muscle-specific reduction in thick filament number serves as a sensitive assay system for determining the pattern of accumulation of MI-ICs with alternative hinge regions. Electron microscopic comparisons of various muscles from wild-type and Mhc ~~ adults reveals that those that contract rapidly or develop high levels of tension utilize only hinge region a, those that contract at moderate rates accumulate MHCs of both types, and those that are slowly contracting have MI-ICs with hinge region b. The presence of alternative hinge-coding exons and their highly tissue-specific usage suggests that this portion of the MHC molecule is important to the isoform-specific properties of MHC that lead to the different physiological and ultrastructural characteristics of various Drosophila muscle types. The absence of other alternative exons in the rod-coding region, aside from those shown previously to encode alternative carboxyl termini, demonstrates that the bulk of the myosin rod is not involved in the generation of isoform-specific properties of the MHC molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.