The role of the amygdala in dyadic social interactions of adult rhesus monkeys (Macaca mulatta) was assessed after bilateral ibotenic acid lesions. Social, nonsocial, and spatial behaviors of amygdalectomized and control monkeys were assessed in 3 dyadic experiments: constrained, unconstrained, and round robin. Lesions produced extensive bilateral damage to the amygdala. Across all experiments, the amygdalectomized monkeys demonstrated increased social affiliation, decreased anxiety, and increased confidence compared with control monkeys, particularly during early encounters. Normal subjects also demonstrated increased social affiliation toward the amygdalectomized subjects. These results indicate that amygdala lesions in adult monkeys lead to a decrease in the species-normal reluctance to immediately engage a novel conspecific in social behavior. The altered behavior of the amygdalectomized monkeys may have induced the increased social interactions from their normal companions. This is contrary to the idea that amygdalectomy produces a decrease in social interaction and increased aggression from conspecifics.
We examined the role of the amygdala in the development of nonhuman primate social behavior. Twenty-four rhesus monkeys received bilateral ibotenic acid lesions of either the amygdala or the hippocampus or received a sham surgical procedure at 2 weeks of age. Subjects were reared with their mothers and were provided daily access to social rearing cohorts. The subjects were weaned at 6 months of age and then observed while paired with familiar conspecifics at 6 and 9 months of age and with unfamiliar conspecifics at 1 year of age. The subjects were also observed during daily cohort socialization periods. Neither amygdala nor hippocampus lesions altered fundamental aspects of social behavior development. All subjects, regardless of lesion condition, developed a species-typical repertoire of social behavior and displayed interest in conspecifics during social encounters. The amygdala lesions, however, clearly affected behaviors related to fear processing. The amygdala-lesioned subjects produced more fear behaviors during social encounters than did control or hippocampus-lesioned subjects. Although the heightened fear response of the amygdala-lesioned subjects was consistent across different testing paradigms and was observed with both familiar and novel partners, it did not preclude social interactions. In fact, the amygdala-lesioned subjects displayed particular social behaviors, such as following, cooing, grunting, presenting to be groomed, and presenting to be mounted more frequently than either control or hippocampus-lesioned subjects. These findings are consistent with the view that the amygdala is not needed to develop fundamental aspects of social behavior and may be more related to the detection and avoidance of environmental dangers.
Behavioral processes regulate immune system function in part via direct sympathetic innervation of lymphoid organs, but little is known about the factors that regulate the architecture of neural fibers in lymphoid tissues. In the present study, we find that experimentally imposed social stress can enhance the density of catecholaminergic neural fibers within axillary lymph nodes from adult rhesus macaques. This effect is linked to increased transcription of the key sympathetic neurotrophin nerve growth factor and occurs predominately in extrafollicular regions of the paracortex that contain T-lymphocytes and macrophages. Functional consequences of stressinduced increases in innervation density include reduced type I interferon response to viral infection and increased replication of the simian immunodeficiency virus. These data reveal a surprising degree of behaviorally induced plasticity in the structure of lymphoid innervation and define a novel pathway by which social factors can modulate immune response and viral pathogenesis.
As part of ongoing studies on the neurobiology of socioemotional behavior in the nonhuman primate, we examined the development of mother-infant interactions in 24 macaque monkeys who received either bilateral amygdala or hippocampus ibotenic acid lesions, or a sham surgical procedure at 2 weeks of age. After surgery, the infants were returned to their mothers and reared with daily access to small social groups. Behavioral observations of the infants in dyads (mother-infant pairs alone), tetrads (two mother-infant pairs), and social groups (six mother-infant pairs and one adult male) revealed species-typical mother-infant interactions for all lesion conditions, with the exception of increased physical contact time between the amygdala-lesioned infants and their mothers. Immediately after permanent separation from their mothers at 6 months of age, the infants were tested in a mother preference test that allowed the infants to choose between their mother and another familiar adult female. Unlike control and hippocampus-lesioned infants, the amygdala-lesioned infants did not preferentially seek proximity to their mother, nor did they produce distress vocalizations. Given the normal development of mother-infant interactions observed before weaning, we attribute the behavior of the amygdala-lesioned infants during the preference test to an impaired ability to perceive potential danger (i.e., separation from their mother in a novel environment), rather than to a disruption of the mother-infant relationship. These results are consistent with the view that the amygdala is not essential for fundamental aspects of social behavior but is necessary to evaluate potentially dangerous situations and to coordinate appropriate behavioral responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.