The beta-chemokines MIP-1alpha, MIP-1beta and RANTES inhibit infection of CD4+ T cells by primary, non-syncytium-inducing (NSI) HIV-1 strains at the virus entry stage, and also block env-mediated cell-cell membrane fusion. CD4+ T cells from some HIV-1-exposed uninfected individuals cannot fuse with NSI HIV-1 strains and secrete high levels of beta-chemokines. Expression of the beta-chemokine receptor CC-CKR-5 in CD4+, non-permissive human and non-human cells renders them susceptible to infection by NSI strains, and allows env-mediated membrane fusion. CC-CKR-5 is a second receptor for NSI primary viruses.
Rare individuals have been multiply exposed to HIV-1 but remain uninfected. The CD4+ T-cells of two of these individuals, designated EU2 and EU3, are highly resistant in vitro to the entry of primary macrophagetropic virus but are readily infectable with transformed T-cell line adapted viruses. We report here on the genetic basis of this resistance. We found that EU2 and EU3 have a homozygous defect in CKR-5, the gene encoding the recently described coreceptor for primary HIV-1 isolates. These individuals appear to have inherited a defective CKR-5 allele that contains an internal 32 base pair deletion. The encoded protein is severely truncated and cannot be detected at the cell surface. Surprisingly, this defect has no obvious phenotype in the affected individuals. Thus, a CKR-5 allele present in the human population appears to protect homozygous individuals from sexual transmission of HIV-1. Heterozygous individuals are quite common (approximately 20%) in some populations. These findings indicate the importance of CKR-5 in HIV-1 transmission and suggest that targeting the HIV-1-CKR-5 interaction may provide a means of preventing or slowing disease progression.
A 32-nucleotide deletion (delta 32) within the beta-chemokine receptor 5 (CCR5) gene has been described in subjects who remain uninfected despite extensive exposure to HIV-1. This allele was found to be common in the Caucasian population with a frequency of 0.0808, but was not found in people of African or Asian ancestry. To determine its role in HIV-1 transmission and disease progression, we analyzed the CCRS genotype of 1252 homosexual men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). No infected participant was found to be homozygous for the delta 32 allele, whereas 3.6% of at-risk but uninfected Caucasian participants were homozygous, showing the highly protective role of this genotype against sexual acquisition of HIV-1. No evidence was found to suggest that heterozygotes were protected against HIV-1 infection, but a limited protective role against disease progression was noted. The delta 32 allele of CCR5 is therefore an important host factor in HIV-1 transmission and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.