TLR expression patterns were remarkably conserved across the study population and evaluated tissues indicating a predictable responsiveness to STI. The results support cautious use of immortalized cells for genital tract modeling.
The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.
Human vaccines have used aluminium-based adjuvants (alum) for >80 years despite incomplete understanding of how alum enhances the immune response. Alum can induce the release of endogenous danger signals via cellular necrosis which elicits inflammation-associated cytokines resulting in humoral immunity. IL-33 is proposed to be one such danger signal that is released from necrotic cells. Therefore, we investigated whether there is a role for IL-33 in the adjuvant activity of alum. We show that alum-induced cellular necrosis results in elevated levels of IL-33 following injection in vivo. Alum and IL-33 induce similar increases in IL-5, KC, MCP-1, MIP-1α and MIP-1β; many of which are dependent on IL-33 as shown in IL-33 knockout mice or by using an IL-33-neutralizing recombinant ST2 receptor. Furthermore, IL-33 itself functions as an adjuvant that, while only inducing a marginal primary response, facilitates a robust secondary response comparable to that observed with alum. However, IL-33 is not absolutely required for alum-induced antibody responses since alum mediates similar humoral responses in IL-33 knockout and wild-type mice. Our results provide novel insights into the mechanism of action behind alum-induced cytokine responses and show that IL-33 is sufficient to provide a robust secondary antibody response independently of alum.
Compartmentalization of nucleic acid sensing TLR9 has been implicated as a mechanism to prevent recognition of self nucleic acid structures. Furthermore, recognition of CpG DNA in different endosomal compartments leads to the production of the proinflammatory cytokine TNF-α, or type I IFN. We previously characterized a tyrosine-based motif at amino acid 888–891 in the cytoplasmic tail of TLR9 important for appropriate intracellular localization. Here we show that this motif is selectively required for the production of TNF, but not IFN. In response to CpG DNA stimulation, the proteolytically processed 80 kDa fragment is tyrosine phosphorylated. Although tyrosine 888 is not itself phosphorylated, the structure of this motif is necessary for both TLR9 phosphorylation and TNF-α production in response to CpG DNA. We conclude that bifurcation in TLR9 signaling is regulated by a critical tyrosine motif in the cytoplasmic tail.
BackgroundInflammatory bowel diseases (IBDs) are chronic, relapsing disorders that affect the gastrointestinal tract of millions of people and continue to increase in incidence each year. While several factors have been associated with development of IBDs, the exact etiology is unknown. Research using animal models of IBDs is beginning to provide insights into how the different factors contribute to disease development. Oral administration of dextran sulfate sodium (DSS) to mice induces a reproducible experimental colitis that models several intestinal lesions associated with IBDs. The murine DSS colitis model can also be adapted to quantify intestinal repair following injury. Understanding the mechanistic basis behind intestinal repair is critical to development of new therapeutics for IBDs because of their chronic relapsing nature.ResultsThe murine DSS colitis model was adapted to provide a system enabling the quantification of severe intestinal injury with impaired wound healing or mild intestinal injury with rapid restoration of mucosal integrity, by altering DSS concentrations and including a recovery phase. We showed that through a novel format for presentation of the clinical disease data, the temporal progression of intestinal lesions can be quantified on an individual mouse basis. Additionally, parameters for quantification of DSS-induced alterations in epithelial cell populations are included to provide insights into mechanisms underlying the development of these lesions. For example, the use of the two different model systems showed that toll-like receptor 9, a nucleic acid-sensing pattern recognition receptor, is important for protection only following mild intestinal damage and suggests that this model is superior for identifying proteins necessary for intestinal repair.ConclusionsWe showed that using a murine DSS-induced experimental colitis model system, and presenting data in a longitudinal manner on a per mouse basis, enhanced the usefulness of this model, and provided novel insights into the role of an innate immune receptor in intestinal repair. By elucidating the mechanistic basis of intestinal injury and repair, we can begin to understand the etiology of IBDs, enabling development of novel therapeutics or prophylactics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.