Abstract.A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught.Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Nonhydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001;Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellitebased images and surface meteorological and PM 10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (∼25 km), the model PM 10 surface dust concentration reached ∼2500 µg m −3 , but underestimated the values measured by the PM 10 stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health.
Complexities of virus genotypes and the stochastic contacts in human society create a big challenge for estimating the potential risks of exposure to a widely spreading virus such as COVID-19. To increase public awareness of exposure risks in daily activities, we propose a birthday-paradox-based probability model to implement in a web-based system, named COSRE (community social risk estimator) and make in-time community exposure risk estimation during the ongoing COVID-19 pandemic. We define exposure risk to mean the probability of people meeting potential cases in public places such as grocery stores, gyms, libraries, restaurants, coffee shops, offices, etc. Our model has three inputs: the real-time number of active and asymptomatic cases, the population in local communities, and the customer counts in the room. With COSRE, possible impacts of the pandemic can be explored through spatiotemporal analysis, e.g., a variable number of people may be projected into public places through time to assess changes of risk as the pandemic unfolds. The system has potential to advance understanding of the true exposure risks in various communities. It introduces an objective element to plan, prepare and respond during a pandemic. Spatial analysis tools are used to draw county-level exposure risks of the United States from April 1 to July 15, 2020. The correlation experiment with the new cases in the next two weeks shows that the risk estimation model offers promise in assisting people to be more precise about their personal safety and control of daily routine and social interaction. It can inform business and municipal COVID-19 policy to accelerate recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.