Two methods for arriving at optimum, individual phenytoin dosage regimens have been evaluated in 12 patients. (1) Individual Michaelis-Menten pharmacokinetic parameters for phenytoin were estimated from two reliable steady-state phenytoin serum concentrations resulting from different daily doses: The observed steady-state phenytoin serum levels obtained after 3 to 8 wk of compliance with dosage regimens calculated from the individual pharmacokinetic parameters agreed well with predicted levels (r = 0.824, p less than 0.02). The average deviation between observed and predicted levels was 0.04 mug/ml (range, +/- 3.2 mug/ml). (2) A previously published nomogram for making adjustments in phenytoin dosage regimens: The serum phenytoin concentration actually expected from the dose indicated by the nomogram was calculated using individual pharmacokinetic parameters. The daily dose for one patient would have exceeded his estimated maximal rate of metabolism. The correlation between calculated and predicted phenytoin serum levels in the other 11 patients was weak but significant (r= 0.360, p less than 0.05). The average deviation was --3 mug/ml (range, 3.9 to --11.3 mug/ml). It was concluded that the use of individual pharmacokinetic parameters is practical and is also superior to the nomogram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.