Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.
DIAL (dihedral alignment) is a web server that provides public access to a new dynamic programming algorithm for pairwise 3D structural alignment of RNA. DIAL achieves quadratic time by performing an alignment that accounts for (i) pseudo-dihedral and/or dihedral angle similarity, (ii) nucleotide sequence similarity and (iii) nucleotide base-pairing similarity.DIAL provides access to three alignment algorithms: global (Needleman–Wunsch), local (Smith–Waterman) and semiglobal (modified to yield motif search). Suboptimal alignments are optionally returned, and also Boltzmann pair probabilities Pr(ai,bj) for aligned positions ai , bj from the optimal alignment. If a non-zero suboptimal alignment score ratio is entered, then the semiglobal alignment algorithm may be used to detect structurally similar occurrences of a user-specified 3D motif. The query motif may be contiguous in the linear chain or fragmented in a number of noncontiguous regions.The DIAL web server provides graphical output which allows the user to view, rotate and enlarge the 3D superposition for the optimal (and suboptimal) alignment of query to target. Although graphical output is available for all three algorithms, the semiglobal motif search may be of most interest in attempts to identify RNA motifs. DIAL is available at http://bioinformatics.bc.edu/clotelab/DIAL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.