Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting disease-relevant targets over others in vitro. However in vivo, many such agents are not therapeutically selective, either because of undesirable activity at effective doses or because the biological system responds to compensate. In theory, drug combinations should permit increased control of such complex biology, but there is a common concern that therapeutic synergy will generally be mirrored by synergistic side-effects. Here we provide evidence, from 94,110 multi-dose combination experiments representing diverse disease areas and large scale flux balance simulations of inhibited bacterial metabolism, that multi-target synergies are more specific than single agent activities to particular cellular contexts. Using an anti-inflammatory combination, we show how multi-target synergy can achieve therapeutic selectivity in animals through differential target expression. Synergistic combinations can increase the number of selective therapies using the current pharmacopeia, and offer opportunities for more precise control of biological systems.
Kit/SCF signaling and Mitf-dependent transcription are both essential for melanocyte development and pigmentation. To identify Mitf-dependent Kit transcriptional targets in primary melanocytes, microarray studies were undertaken. Among identified targets was BCL2, whose germline deletion produces melanocyte loss and which exhibited phenotypic synergy with Mitf in mice. BCL2's regulation by Mitf was verified in melanocytes and melanoma cells and by chromatin immunoprecipitation of the BCL2 promoter. Mitf also regulates BCL2 in osteoclasts, and both Mitf(mi/mi) and Bcl2(-/-) mice exhibit severe osteopetrosis. Disruption of Mitf in melanocytes or melanoma triggered profound apoptosis susceptible to rescue by BCL2 overexpression. Clinically, primary human melanoma expression microarrays revealed tight nearest neighbor linkage for MITF and BCL2. This linkage helps explain the vital roles of both Mitf and Bcl2 in the melanocyte lineage and the well-known treatment resistance of melanoma.
The Mixed-Lineage Leukemia (MLL) gene encodes a Trithorax-related chromatin-modifying protooncogene that positively regulates Hox genes. In addition to their well-characterized roles in axial patterning, Trithorax and Polycomb family proteins perform less-understood functions in vertebrate hematopoiesis. To define the role of MLL in the development of the hematopoietic system, we examined the potential of cells lacking MLL. Mll-deficient cells could not develop into lymphocytes in adult RAG-2 chimeric animals. Similarly, in vitro differentiation of B cells required MLL. In chimeric embryos, Mll-deficient cells failed to contribute to fetal liver hematopoietic stem cell/progenitor populations. Moreover, we show that aorta-gonad-mesonephros (AGM) cells from Mll-deficient embryos lacked hematopoietic stem cell (HSC) activity despite their ability to generate hematopoietic progeny in vitro. These results demonstrate an intrinsic requirement for MLL in definitive hematopoiesis, where it is essential for the generation of HSCs in the embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.