Surveys of microbiological groundwater quality were conducted in a region with intensive animal agriculture in California, USA. The survey included monitoring and domestic wells in eight concentrated animal feeding operations (CAFOs) and 200 small (domestic and community supply district) supply wells across the region. Campylobacter was not detected in groundwater, whereas Escherichia coli O157:H7 and Salmonella were each detected in 2 of 190 CAFO monitoring well samples. Nonpathogenic generic E. coli and Enterococcus spp. were detected in 24.2% (46/190) and 97.4% (185/190) groundwater samples from CAFO monitoring wells and in 4.2% (1/24) and 87.5% (21/24) of CAFO domestic wells, respectively. Concentrations of both generic E. coli and Enterococcus spp. were significantly associated with well depth, season, and the type of adjacent land use in the CAFO. No pathogenic bacteria were detected in groundwater from 200 small supply wells in the extended survey. However, 4.5 to 10.3% groundwater samples were positive for generic E. coli and Enterococcus. Concentrations of generic E. coli were not significantly associated with any factors, but concentrations of Enterococcus were significantly associated with proximity to CAFOs, seasons, and concentrations of potassium in water. Among a subset of E. coli and Enterococcus isolates from both surveys, the majority of E. coli (63.6%) and Enterococcus (86.1%) isolates exhibited resistance to multiple (≥3) antibiotics. Findings confirm significant microbial and antibiotic resistance loading to CAFO groundwater. Results also demonstrate significant attenuative capacity of the unconfined alluvial aquifer system with respect to microbial transport.
Concerns about water quality and possible intentional contamination of water distribution systems are making on-line monitoring an increasingly important priority for many water utilities. The city of Ann Arbor (Mich.) evaluated different water quality monitoring parameters, tested multiple manufacturers' monitoring equipment, and evaluated how to effectively locate monitoring equipment within the distribution system to address these two concerns. A suite of modeling tools was used in this case study. Total chlorine, ultraviolet absorbance at 254 nm, conductivity, and dissolved oxygen were selected for monitoring based on pilot testing. When balancing costs and benefits, four stations for monitoring water quality and four stations for monitoring contamination events were found to be sufficient for the city. Only one location was common between water quality and security sites, and the number of security monitors needed was not affected by system demands. It was confirmed that it is critical to minimize response time in order to mitigate the effects of a contamination event.
Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.