The development of drugs and biologicals whose mechanisms of action may extend beyond their target indications has led to a need to identify unexpected potential toxicities promptly even while blinded clinical trials are under way. One component of recently issued FDA rules regarding safety reporting requirements raises the possibility of breaking the blind for pre-identified serious adverse events that are not the clinical endpoints of a blinded study. Concern has been expressed that unblinding individual cases of frequently occurring adverse events could compromise the overall validity of the study. However, if external information is available about adverse event rates among patients not receiving the test product in populations similar to the study population, then it may be possible to address the potential for elevated risk without unblinding the trial. This article describes a Bayesian approach for determining the likelihood of elevated risk suitable binomial or Poisson likelihoods that applies regardless of the metric used to express the difference. The method appears to be particularly appropriate for routine monitoring of safety information for project development programs that include large blinded trials. Copyright © 2016 John Wiley & Sons, Ltd.
Bacteria induced diseases such as community-acquired pneumonia (CAP) are easily transmitted through respiratory droplets expelled from a person’s nose or mouth. It has become increasingly important for researchers to discover materials that can be implemented in in vitro surface contact settings which disrupt bacterial growth and transmission. Copper (Cu) is known to have antibacterial properties and have been used in medical applications. This study investigates the antibacterial properties of polyacrylonitrile (PAN) based nanofibers coated with different concentrations of copper nanoparticles (CuNPs). Different concentrations of copper sulfate (CuSO4) and polyacrylonitrile (PAN) were mixed with dimethylformamide (DMF) solution, an electrospinning solvent that also acts as a reducing agent for CuSO4, which forms CuNPs and Cu ions. The resulting colloidal solutions were electrospun into nanofibers, which were then characterized using various analysis techniques. Methicillin-Resistant isolates of Staphylococcus aureus, an infective strain that induces pneumonia, were incubated with cutouts of various nanocomposites using disk diffusion methods on Luria-Bertani (LB) agar to test for the polymers’ antibacterial properties. Herein, we disclose that PAN-CuNP nanofibers have successfully demonstrated antibacterial activity against bacteria that were otherwise resistant to highly effective antibiotics. Our findings reveal that PAN-CuNP nanofibers have the potential to be used on contact surfaces that are at risk of contracting bacterial infections, such as masks, in vivo implants, or surgical intubation.
Infectious microbial diseases can easily be transferred from person to person in the air or via high contact surfaces. As a result, researchers must aspire to create materials that can be implemented in surface contact applications to disrupt pathogen growth and transmission. This study examines the antimicrobial properties of polyacrylonitrile (PAN) nanofibers coated with silver nanoparticles (AgNPs) and silver(I,III) oxide. PAN was homogenized with varied weight concentrations of silver nitrate (AgNO3) in N,N-dimethylformamide solution, a common organic solvent that serves as both an electrospinning solvent and as a reducing agent that forms AgNPs. The subsequent colloids were electrospun into nanofibers, which were then characterized via various analysis techniques, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, dynamic light scattering, and X-ray photoelectron spectroscopy. A total of 10 microbes, including 7 strains of Gram-positive bacteria, 2 strains of Gram-negative bacteria, and Candida albicans, were incubated with cutouts of various PAN-AgNP nanocomposites using disk diffusion methods to test for the nanocomposites’ antimicrobial efficiency. We report that our electrospun PAN-AgNP nanocomposites contain 100% AgO, a rare, mixed oxidation state of silver(I,III) oxide that is a better sterilizing agent than conventional nanosilver. PAN-AgNP nanocomposites also retain a certain degree of antimicrobial longevity; samples stored for approximately 90 days demonstrate a similar antimicrobial activity against Escherichia coli (E. coli) and Lactobacillus crispatus (L. crispatus) when compared to their newly electrospun counterparts. Moreover, our results indicate that PAN-AgNP nanocomposites successfully display antimicrobial activity against various bacteria and fungi strains regardless of their resistance to conventional antibiotics. Our study demonstrates that PAN-AgNP nanocomposites, a novel polymer material with long-term universal antimicrobial stability, can potentially be applied as a universal antimicrobial on surfaces at risk of contracting microbial infections and alleviate issues related to antibiotic overuse and microbial mutability.
Infectious microbial diseases can easily be transferred from person to person in the air or via high contact surfaces. As a result, researchers must aspire to create materials that can be implemented in surface contact applications to disrupt pathogen growth and transmission. Silver (Ag) is known to possess antimicrobial activity and has been used in the past in various pharmaceutical applications. Herein, we examine the antimicrobial properties of polyacrylonitrile (PAN) nanofibers coated with different concentrations of silver nanoparticles (AgNPs). Polyacrylonitrile (PAN) was homogenized with varied weight concentrations of silver nitrate (AgNO3) in N,N-Dimethylformamide (DMF) solution, a common organic solvent that serves as both an electrospinning solvent and as a reducing agent that forms AgNPs. The subsequent colloids were electrospun into nanofibers, which were then characterized via various analysis techniques, including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray (EDX) Analysis, Dynamic Light Scattering (DLS), and X-Ray Photoelectron Spectroscopy (XPS). 10 microbes, including 7 strains of Gram-positive bacteria, 2 strains of Gram-negative bacteria, and Candida albicans were incubated with cutouts of various PAN-AgNP nanocomposites using disk diffusion methods to test for the nanocomposites’ antimicrobial efficiency. We report that PAN-AgNP nanocomposites retain a certain degree of antimicrobial longetivity; samples stored for approximately 90 days demonstrate similar antimicrobial activity against Escherichia coli (E. coli) and Lactobacillus crispatus (L. crispatus) when compared to their newly electrospun counterparts. Moreover, our results indicate that PAN-AgNP nanocomposites successfully display antimicrobial activity against various bacteria and fungi strains regardless of their resistance to conventional antibiotics. Our study demonstrates that PAN-AgNP nanocomposites can potentially be applied to surfaces at risk of contracting microbial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.