In this paper we address the problem of constructing reliable neural-net implementations, given the assumption that any particular implementation will not be totally correct. The approach taken in this paper is to organize the inevitable errors so as to minimize their impact in the context of a multiversion system, i.e., the system functionality is reproduced in multiple versions, which together will constitute the neural-net system. The unique characteristics of neural computing are exploited in order to engineer reliable systems in the form of diverse, multiversion systems that are used together with a "decision strategy" (such as majority vote). Theoretical notions of "methodological diversity" contributing to the improvement of system performance are implemented and tested. An important aspect of the engineering of an optimal system is to overproduce the components and then choose an optimal subset. Three general techniques for choosing final system components are implemented and evaluated. Several different approaches to the effective engineering of complex multiversion systems designs are realized and evaluated to determine overall reliability as well as reliability of the overall system in comparison to the lesser reliability of component substructures.
Acute anterior uveitis (AAU) is the commonest type of uveitis and HLA-B27 AAU is the most frequently recognized type of acute anterior uveitis and anterior uveitis overall. Recent evidence indicates that acute anterior uveitis is a heterogenous disease, is polygenic and is frequently associated with the spondyloarthropathies (SpA). Studies of patients with AAU and animal models of disease indicate a role for innate immunity, the IL-23 cytokine pathway and exogenous factors, in the pathogenesis of both SpA and acute anterior uveitis. Recently described genetic associations cluster around immunologic pathways, including the IL-17 and IL-23 pathways, antigen processing and presentation, and lymphocyte development and activation. Patients with ankylosing spondylitis (AS) and AAU share other genetic markers, such as ERAP-1, which show strong evidence of gene-gene interaction and point to new mechanisms of disease pathogenesis. These observations have major implications for understanding the pathogenesis of HLA-B27 diseases, such as AAU, and may lead to the development of more specific therapy for AAU. Received 6 January 2016; revised 6 February 2016; accepted 18 February 2016; published online 31 May 2016.
Adalimumab appears to reduce the corticosteroid burden in active and inactive non-infectious uveitis in the real-world setting. Inflammatory activity at the time of adalimumab commencement may determine long-term treatment success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.