BACKGROUND. Sporadic vascular malformations (VMs) are complex congenital anomalies of blood vessels that lead to stroke, life-threatening bleeds, disfigurement, overgrowth, and/or pain. Therapeutic options are severely limited, and multidisciplinary management remains challenging, particularly for high-flow arteriovenous malformations (AVM).METHODS. To investigate the pathogenesis of sporadic intracranial and extracranial VMs in 160 children in which known genetic causes had been excluded, we sequenced DNA from affected tissue and optimized analysis for detection of low mutant allele frequency.RESULTS. We discovered multiple mosaic-activating variants in 4 genes of the RAS/MAPK pathway, KRAS, NRAS, BRAF, and MAP2K1, a pathway commonly activated in cancer and responsible for the germline RAS-opathies. These variants were more frequent in high-flow than low-flow VMs. In vitro characterization and 2 transgenic zebrafish AVM models that recapitulated the human phenotype validated the pathogenesis of the mutant alleles. Importantly, treatment of AVM-BRAF mutant zebrafish with the BRAF inhibitor vemurafinib restored blood flow in AVM.CONCLUSION. Our findings uncover a major cause of sporadic VMs of different clinical types and thereby offer the potential of personalized medical treatment by repurposing existing licensed cancer therapies.FUNDING. This work was funded or supported by grants from the AVM Butterfly Charity, the Wellcome Trust (UK), the Medical Research Council (UK), the UK National Institute for Health Research, the L’Oreal-Melanoma Research Alliance, the European Research Council, and the National Human Genome Research Institute (US).
Summary Background Genotype–phenotype studies can identify subgroups of patients with specific clinical features or differing outcomes, which can help shape management. Objectives To characterize the frequency of different causative genotypes in congenital melanocytic naevi (CMN), and to investigate genotype–phenotype and genotype–outcome associations. Methods We conducted a large cohort study in which we undertook MC1R genotyping from blood, and high‐sensitivity genotyping of NRAS and BRAF hotspots in 156 naevus biopsies from 134 patients with CMN [male 40%; multiple CMN 76%; projected adult size (PAS) > 20 cm, 59%]. Results Mosaic NRAS mutations were detected in 68%, mutually exclusive with BRAF mutations in 7%, with double wild‐type in 25%. Two separate naevi were sequenced in five of seven patients with BRAF mutations, confirming clonality. Five of seven patients with BRAF mutations had a dramatic multinodular phenotype, with characteristic histology distinct from classical proliferative nodules. NRAS mutation was the commonest in all sizes of CMN, but was particularly common in naevi with PAS > 60 cm, implying more tolerance to that mutation early in embryogenesis. Facial features were less common in double wild‐type patients. Importantly, the incidence of congenital neurological disease, and apparently of melanoma, was not altered by genotype; no cases of melanoma were seen in BRAF‐mutant multiple CMN, however, this genotype is rare. Conclusions CMN of all sizes are most commonly caused by mutations in NRAS. BRAF is confirmed as a much rarer cause of multiple CMN, and appears to be commonly associated with a multinodular phenotype. Genotype in this cohort was not associated with differences in incidence of neurological disease in childhood. However, genotyping should be undertaken in suspected melanoma, for guidance of treatment. What's already known about this topic? Multiple congenital melanocytic naevi (CMN) have been shown to be caused by NRAS mosaic mutations in 70–80% of cases, by BRAF mosaicism in one case report and by inference in some previous cases. There has been debate about genotypic association with different sizes of CMN, and no data on genotype–outcome. What does this study add? NRAS mosaicism was found in 68%, BRAF in 7% and double wild‐type in 25% of cases of CMN. NRAS was the commonest mutation in all sizes of CMN, but was nearly universal in projected adult size > 60 cm. BRAF is often associated with a distinct multinodular clinical/histological phenotype. Adverse outcomes did not differ between genotypes on current numbers.
Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2C342Y) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), Fgfr2C342Y/+ heterozygous (HET) and Fgfr2C342Y/C342Y homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2) was studied by in situ hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2C342Y/C342Y mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon–Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.
Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.