The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA–mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA–mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks.
BackgroundBacterial sRNA-mediated regulatory networks has been introduced as a powerful way to analyze the fast rewiring capabilities of a bacteria in response to changing environmental conditions. The identification of mRNA targets of bacterial sRNAs is essential to investigate their functional activities. However, this step remains challenging with the lack of knowledge of the topological and biological constraints behind the formation of sRNA-mRNA duplexes. Even with the most sophisticated bioinformatics target prediction tools, the large proportion of false predictions may be prohibitive for further analyses. To deal with this issue, sRNA target analyses can be carried out from the resulting gene lists given by RNA-SEQ experiments when available. However, the number of resulting target candidates may be still huge and cannot be easily interpreted by domain experts who need to confront various biological features to prioritize the target candidates. Therefore, novel strategies have to be carried out to improve the specificity of computational prediction results, before proposing new candidates for an expensive experimental validation stage.ResultTo address this issue, we propose a new visualization tool rNAV 2.0, for detecting and filtering bacterial sRNA targets for regulatory networks. rNAV is designed to cope with a variety of biological constraints, including the gene annotations, the conserved regions of interaction or specific patterns of regulation. Depending on the application, these constraints can be variously combined to analyze the target candidates, prioritized for instance by a known conserved interaction region, or because of a common function.ConclusionThe standalone application implements a set of known algorithms and interaction techniques, and applies them to the new problem of identifying reasonable sRNA target candidates.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1598-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.