High-lift devices are commonly modelled using potential flow methods at the conceptual design stage. Often, these analyses require the use of prescribed wake shapes in order to avoid numerical stability issues. The wake type used, however, has an impact on the absolute aerodynamic load predictions, which is why, in general, these methods are used to assess performance changes due to configuration variations. Therefore, a study was completed that compared the predicted aerodynamic performance changes of such variations of high-lift configurations using different wake types. Lift and induced drag results are compared with the results that were obtained using relaxed wakes and various prescribed wake shapes. Specific attention is given to predictions of performance changes due to changes in geometry. It was found that models with wakes that are prescribed below the freestream direction yield the best results when investigating performance changes due to flap deflections and flap-span changes. The effect of flap-gap sizes is best evaluated using a fully-relaxed model. The numerically most stable approach of wakes that are prescribed leaving the trailing edge upwards seems to be least reliable in predicting performance changes.
Abstract:For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient.
High-lift devices are commonly modelled using potential flow methods at the conceptual design stage. Often, these analyses require the use of prescribed wake shapes in order to avoid numerical stability issues. The wake type used, however, has an impact on the absolute aerodynamic load predictions, which is why, in general, these methods are used to assess performance changes due to configuration variations. Therefore, a study was completed that compared the predicted aerodynamic performance changes of such variations of high-lift configurations using different wake types. Lift and induced drag results are compared with the results that were obtained using relaxed wakes and various prescribed wake shapes. Specific attention is given to predictions of performance changes due to changes in geometry. It was found that models with wakes that are prescribed below the freestream direction yield the best results when investigating performance changes due to flap deflections and flap-span changes. The effect of flap-gap sizes is best evaluated using a fully-relaxed model. The numerically most stable approach of wakes that are prescribed leaving the trailing edge upwards seems to be least reliable in predicting performance changes.
For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient. Keywords: wake-model; boxwing; induced drag; potential-flow theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.