Summary 1. Microarthropods (Acari and Collembola) are dominant components of the terrestrial fauna in the Antarctic. Their cold tolerance, which forms the mainspring of their adaptational strategy, is reviewed against a background of their structure and function, and by comparison with other arthropods. 2. Two species, the isotomid collembolan Cryptopygus antarcticus Willem and the oribatid mite Alaskozetes antarcticus (Michael), are examined in detail, and afford a comparative approach to the mechanisms underlying cold tolerance in insect and arachnid types. 3. All microarthropods appear to be freezing‐susceptible (unable to tolerate tissue ice), and they utilize varying levels of supercooling to avoid freezing. Gut contents are considered to be the prime nucleation site in most arthropods when supercooled, particularly for Antarctic species. Moulting also increases individual supercooling ability especially in Collembola, and the activity of ice‐nucleating bacteria in cold‐hardy arthropods may be important. 4. Sources of ice nucleators are many and varied, originating externally (motes) or internally (ice‐nucleating agents). They act either extracellularly (mainly in the haemolymph) to promote freezing in ice‐tolerant life stages, or intracellularly in freezing‐susceptible forms. Thermal hysteresis proteins, acting colligatively, occur in many arthropods including Collembola; they depress both the freezing point of body fluids and the whole‐body supercooling point of freezing‐ susceptible and freezing‐tolerant species. 5. Bimodal supercooling point distributions are a feature of microarthropods and water droplets. Samples of field populations of Antarctic mites and springtails show significant seasonal changes in these distributions, which in some respects are analogous to purely physical systems of water droplets. Supercooling points are confirmed as accurate measures of cold‐hardiness and survival for Antarctic species, but not necessarily for other arthropods. The effects of constant sub‐zero temperatures approaching the limit of the supercooling ability of arthropods require study. 6. Desiccation and dehydration influence microarthropod physiology in several ways; in Alaskozetes it triggers glycerol synthesis. Glycerol may aid binding of water in severely dehydrated insects, but the relationship of such ‘bound’ water to cold‐hardiness is unclear. 7. Sugar alcohols (polyols) and sugars are accumulated as potential cryoprotectants in many arthropods at low temperatures, and antifreeze systems may be single or multi‐component in structure. Cryoprotectant synthesis and regulation have been studied principally in insects, and fresh weight concentrations of 0–3‐5 M of polyols have been found. Trehalose accumulation may also influence cold‐hardiness. 8. Microarthropods fall within the spectrum of cold tolerance observed for arthropods and other invertebrates. No special adaptations are found in Antarctic species, and similar strategies and mechanisms are present in both insects and arachnids. The colonization and ...
Abstraet An experiment was conducted to measure the effects of summer warming on the total population densities of soil-dwelling microarthropods in the high Arctic and to compare these results with those from natural between-year and between-site variations. Small polythene tents were used to elevate summer temperatures over 3 years on polar semi-desert and tundra heath in West Spitsbergen, Svalbard, Norway. Soil cores were taken at regular intervals from tented and untented (control) plots and heat extracted for mites (Acarina: Oribatida) and springtails (Collembola). Species present were similar at both sites, but at the start of the experiment total springtail populations were greater at the polar semi-desert whilst oribatid mite densities were equal at both sites. No significant effect of temperature elevation on oribatid mite populations emerged, even after 3 years. By contrast, springtail numbers were significantly lower on tented versus control plots at the polar semi-desert at the end of year 3, but not so at the tundra heath. Collembola numbers declined at both sites during the warm dry midsummers of 1992/1993 and this was most marked at the better drained polar semi-desert site. Over the equivalent period total oribatid mite populations, while
Abstract:Temperatures within soil and plant habitats on Signy Island in the maritime Antarcticwere measured during 1987. Four sites were monitored using minithermistors attached to a data logging system. Three main periods within the annual temperature cycle were identified. In springhummer (November-March) there was much inter-day variation in maximum temperatures, but minimum daily temperatures were always close to 0°C. However, there were very few freeze-thaw cycles extending below the -0.5"C threshold during this period, and those that occurred were not severe. It is considered that freeze-thaw cycling is unlikely to be a significant factor in organism survival during summer. All sites showed a long period of relatively mild subzero temperatures during autumn (March-May). This may be of importance in promoting cold-hardiness of organisms living in these ecosystems before the decline to lower winter temperatures. Minimum winter temperatures varied markedly between sites; lowest temperatures occurring in areas where there was little insulating snow cover. Within site temperature variation was generally small, confirming the validity of the use of small numbers of probes to monitor environmental temperatures in such habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.