This paper presents a design methodology for a low-power, low-chip-area, and high-resolution successive approximations register (SAR) analog-to-digital converter (ADC). The proposed method includes a segmented capacitive DAC (C-DAC) to reduce the power consumption and the total area. An embedded self-calibration algorithm based on a set of trimming capacitors was applied alongside a dynamic element matching (DEM) procedure to control the inherent linearity issues caused by the process mismatch. The SAR ADC and each additional algorithm were modeled in MATLAB to show their efficiency. Finally, a simple methodology was developed to allow for the fast estimation of signal-to-noise ratios (SNRs) without any FFT calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.