We applied Illumina Human Methylation450K array to perform a genomic-scale single-site resolution DNA methylation analysis in neuronal and nonneuronal (primarily glial) nuclei separated from the orbitofrontal cortex of postmortem human brain. The findings were validated using enhanced reduced representation bisulfite sequencing. We identified thousands of sites differentially methylated (DM) between neuronal and nonneuronal cells. The DM sites were depleted within CpG-island–containing promoters but enriched in predicted enhancers. Classification of the DM sites into those undermethylated in neurons (neuronal type) and those undermethylated in nonneuronal cells (glial type), combined with findings of others that methylation within control elements typically negatively correlates with gene expression, yielded large sets of predicted neuron-specific and non–neuron-specific genes. These sets of predicted genes were in excellent agreement with the available direct measurements of gene expression in human and mouse. We also found a distinct set of DNA methylation patterns that were unique for neuronal cells. In particular, neuronal-type differential methylation was overrepresented in CpG island shores, enriched within gene bodies but not in intergenic regions, and preferentially harbored binding motifs for a distinct set of transcription factors, including neuron-specific activity-dependent factors. Finally, non-CpG methylation was substantially more prevalent in neurons than in nonneuronal cells.
The thalamus provides a nodal link for multiple functional circuits that are impaired in schizophrenia (SZ). Despite inconsistencies in the literature, a meta analysis suggests that the volume of the thalamus relative to that of the brain is decreased in SZ. Morphometric neuroimaging studies employing deformation, voxel-based and region of interest methodologies suggest that the volume deficit preferentially affects the thalamic regions containing the anterior and mediodorsal nuclei, and the pulvinar. Postmortem design-based stereological studies have produced mixed results regarding volume and neuronal deficits in these nuclei. This review examines those aspects of thalamic circuitry and function that suggest salience to SZ. Evidence for anomalies of thalamic structure and function obtained from postmortem and neuroimaging studies is then examined and directions for further research proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.