No abstract
The structure and development of roots and haustoria in 37 species of parasitic Scrophulariaceae was studied using light microscopy. The mature haustorium consists of two regions: the swollen “body” and the parent root, which resembles non‐haustorial roots in structure. The body arises from the parent root and is composed of an epidermis, cortex, central region of xylem (the vascular core), a region of parenchyma (the central parenchymatous core), and the portion of the haustorium contained in the host tissue (the endophyte). The xylem of the vascular core is composed predominately of vessel elements. The central parenchymatous core is composed of parenchyma and col‐lenchyma. Vessels extend from the vascular core through the central parenchymatous core to the endophyte. The endophyte is composed of parenchyma cells and vessel elements. No phloem is present in the body of the haustorium. Early stages in the development of the haustorium are exogenous. Initial periclinal divisions in the epidermis or outer cortex are followed by hypertrophy of cortical parenchyma. These events are followed by development of the vascular core from the pericycle, attachment of haustorium to the host by a specialized layer of cementing cells or root hairs, and penetration of the host by dissolution of host cells.
Woods of over 40 species representing nine genera of Styracaceae were studied. Features present in most taxa include growth rings, diffuse porosity, combinations of both solitaries and pore multiples, exclusively scalariform perforation plates, opposite to alternate intervessel pitting, imperforate tracheary elements with indistinctly bordered pits, both uniseriate and multiseriate heterocellular rays, and axial parenchyma distributed as a combination of diffuse, diffuse-in-aggregates, and scanty. Prismatic crystals occur in species of the genera Bruinsmia, Halesia, and Styrax, and silica is present in a few Neotropical species of Styrax. The characteristic solitary pore distribution and high scalariform perforation plate bar number of Huodendron are of potential evolutionary significance. The xylem of Lissocarpa differs from the Styracaceae in possessing more highly evolved vessel elements with both simple and scalariform perforations and prominently banded axial parenchyma. The occurrence of simple perforation plates in the wider, earlywood vessel elements, along with an increased pore frequency and decreased vessel element length, in Styrax platanifolius and S. texanus is documented. Both species inhabit seasonally dry habitats of the southwestern United States, thus supporting similar specialisations observed in other plants growing in xerophytic conditions. The apparent variation in perforation plate condition within different geographic varieties of S. officinalis is discussed. Significant correlations of wood anatomical characters and latitude of provenance are present among species of Styracaceae. Increasing latitude is strongly correlated with increased pore and multiseriate ray frequency, and decreased vessel element length and wall thickness. Increasing latitude is less strongly correlated with an occurrence of decreased pore diameter, increased bar number per perforation plate, increased fibre-tracheid and intervessel pit diameter, and increased frequency of uniseriate rays. Weak correlations are also evident between increasing latitude and shorter ray height and narrower, shorter, and thinner-walled fibre-tracheids.
J I P nn " pal , char acters of vegetative anatomy which are of phylogenetic significance at the higher levels in angiosperm systematics are defined and discussed in relation to their taxonomic distribution in the Takhtajan and the Cronquist systems of angiosperm classification. In absence of a complete fossil record, application of the phylogenetic method of association, correlation, and common ground plan are illustrated from anatomical data Vegetative structure contains a wealth of potentially significant systematic information' However only the evolutionary trends in the secondary xylem and the phylogenetic conclusions that have resulted from recognizing these trends, provide a firm basis of angiosperm phylogeny. In order for the phylogenetic significance of other vegetative anatomical characters to be fully realized more comprehensive studies must be undertaken and new methodologies and approaches applied. For the most part, anatomical data support the at tteheVr 10nS ,° f ?* ? khtajan u^ Cr ° nquist SyStemS of angiosperm clarification SJrJSSf taX °"°r C f eIS r However > ^ e r° St reliable application of anatomical informaof close affin% Stat6mentS ° f n6gati ° n ° f dose relationship rather than positive assertions Anatomical characters have been employed for systematic purposes well over
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.