Blood loss and subsequent transfusions are associated with major morbidity and mortality. The use of antifibrinolytics can reduce blood loss in cardiac surgery, trauma, orthopedic surgery, liver surgery and solid organ transplantation, obstetrics and gynecology, neurosurgery and non-surgical diseases. The evidence of their efficacy has been mounting for years. Tranexamic acid (TXA), a synthetic lysine-analogue antifibrinolytic, was first patented in 1957 and its use has been increasing in contrast to aprotinin, a serine protease inhibitor antifibrinolytic. This review aims to help acute care physicians navigate through the clinical evidence available for TXA therapy, develop appropriate dose regimens whilst minimizing harm, as well as understand its broadening scope of applications. Many questions remain unanswered regarding other clinical effects of TXA such as anti-inflammatory response to cardiopulmonary bypass, the risk of thromboembolic events, adverse neurological effects such as seizures, and its morbidity and mortality, all of which necessitate further clinical trials on its usage and safety in various clinical settings.
Supplemental Digital Content is available in the text.
Introduction The COVID-19 pandemic has unveiled widespread shortages of personal protective equipment including N95 respirators. Several centers are developing reusable stop-gap respirators as alternatives to disposable N95 respirators during public health emergencies, using techniques such as 3D-printing, silicone moulding and plastic extrusion. Effective sealing of the mask, combined with respiratory filters should achieve 95% or greater filtration of particles less than 1um. Quantitative fit-testing (QNFT) data from these stop-gap devices has not been published to date. Our team developed one such device, the “SSM”, and evaluated it using QNFT. Methods Device prototypes were iteratively evaluated for comfort, breathability and communication, by team members wearing them for 15-30min. The fit and seal were assessed by positive and negative pressure user seal checks. The final design was then formally tested by QNFT, according to CSA standard Z94.4–18 in 40 volunteer healthcare providers. An overall fit-factor >100 is the passing threshold. Volunteers were also tested by QNFT on disposable N95 masks which had passed qualitative fit testing (QLFT) by institutional Occupational Health and Safety Department. Results The SSM scored 3.5/5 and 4/5 for comfort and breathability. The median overall harmonic mean fit-factors of disposable N95 and SSM were 137.9 and 6316.7 respectively. SSM scored significantly higher than disposable respirators in fit-test runs and overall fit-factors (p <0.0001). Overall passing rates in disposable and SSM respirators on QNFT were 65% and 100%. During dynamic runs, passing rates in disposable and SSM respirators were 68.1% and 99.4%; harmonic means were 73.7 and 1643. Conclusions We present the design and validation of a reusable N95 stop-gap filtering facepiece respirator that can match existent commercial respirators. This sets a precedence for adoption of novel stop-gap N95 respirators in emergency situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.