The developmental processes of the oligodendrocyte progenitor cell (OPC) lineage that are targeted by interferon-gamma (IFN-gamma) were studied in primary rat OPC cultures. Under conditions of thyroid hormone-mediated oligodendrocyte differentiation, IFN-gamma produced a dose-dependent apoptotic response in OPCs. The lowest dose tested (15 ng/ml or 75 U/ml) was nonapoptotic, but activated detectable STAT1 DNA-binding. At this dose, IFN-gamma reduced the percentage of mature O1+ cells and increased the percentage of immature A2B5+ OPCs. This was observed without significant change in total cell number and cytotoxicity, and was accompanied by an increase in BrdU-labeled A2B5+ and O4+ cells. FACS analysis confirmed a lack of apoptotic sub-G1 cells and revealed a greater percentage of S- and G2/M-phase OPCs with IFN-gamma treatment. Dual immunostaining with Ki-67 and Olig2 showed a smaller percentage of Olig2+ cells in G0 phase in IFN-gamma-treated OPCs, indicating loss of G1 control. Instead, increased levels and phosphorylation of the checkpoint protein p34cdc2 by IFN- suggested increased partial arrest in G2. IFN-gamma not only sustained expression of PCNA and the G1-S regulators retinoblastoma protein, cyclin D1, cyclin E, and cdk2, but also decreased p27 levels. In addition to changes in cell proliferation and differentiation, IFN-gamma attenuated myelin basic protein (MBP) expression significantly, which was associated with decreased expression of both MBP and Sox10 RNAs. These findings indicate that IFN-gamma not only maintains cell cycle activity that could predispose OPCs to apoptosis, but also overrides G1-G0 signals leading to thyroid hormone-mediated terminal differentiation and myelin gene expression.
Differentiation status in neuroblastoma strongly affects clinical outcomes and inducing differentiation is a treatment strategy in this disease. However, the molecular mechanisms that control neuroblastoma differentiation are not well understood. Here we show that high-level HOXC9 expression is associated with neuroblastoma differentiation and is prognostic for better survival in neuroblastoma patients. HOXC9 induces growth arrest and neuronal differentiation in neuroblastoma cells by directly targeting both cell cycle-promoting and neuronal differentiation genes. HOXC9 expression is upregulated by retinoic acid (RA) and knockdown of HOXC9 expression confers resistance to RA-induced growth arrest and differentiation. Moreover, HOXC9 expression is epigenetically silenced in RA-resistant neuroblastoma cells and forced HOXC9 expression is sufficient to inhibit their proliferation and tumorigenecity. These findings identify HOXC9 as a key regulator of neuroblastoma differentiation and suggest a therapeutic strategy for RA-resistant neuroblastomas through epigenetic activation of HOXC9 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.