The two major glycoproteins on the surface of the RSV virion, the attachment glycoprotein (G) and the fusion (F) glycoprotein, control the initial phases of infection. G targets the ciliated cells of the airways, and F causes the virion membrane to fuse with a target cell membrane. The F protein is the major target for antiviral drug development, and both G and F glycoproteins are the antigens targeted by neutralizing antibodies induced by infection. In this chapter we review the structure and function of the RSV surface glycoproteins, including recent X-ray crystallographic data of the F glycoprotein in its pre- and postfusion conformations, and discuss how this information informs antigen selection and vaccine development.
In 1995, the Institute for Genomic Research completed the genome sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. Although extremely useful in understanding the basic biology of H. influenzae, these data have not provided significant insight into disease caused by nontypeable H. influenzae, as serotype d strains are not pathogens. In contrast, strains of nontypeable H. influenzae are the primary pathogens of chronic and recurrent otitis media in children. In addition, these organisms have an important role in acute otitis media in children as well as other respiratory diseases. Such strains must therefore contain a gene repertoire that differs from that of strain Rd. Elucidation of the differences between these genomes will thus provide insight into the pathogenic mechanisms of nontypeable H. influenzae. The genome of a representative nontypeable H. influenzae strain, 86-028NP, isolated from a patient with chronic otitis media was therefore sequenced and annotated. Despite large regions of synteny with the strain Rd genome, there are large rearrangements in strain 86-028NP's genome architecture relative to the strain Rd genome. A genomic island similar to an island originally identified in H. influenzae type b is present in the strain 86-028NP genome, while the mu-like phage present in the strain Rd genome is absent from the strain 86-028NP genome. Two hundred eighty open reading frames were identified in the strain 86-028NP genome that were absent from the strain Rd genome. These data provide new insight that complements and extends the ongoing analysis of nontypeable H. influenzae virulence determinants.In 1995 Haemophilus influenzae strain Rd, a rough derivative of H. influenzae serotype d strain KW20 (strain Rd hereafter), became the first free-living organism to have its genome sequenced to completion (34). Importantly, this also helped establish the large-scale shotgun approach, mated with the utilization of a scaffolding library and computer-assisted assembly, as a rational and expeditious approach for the sequencing of small bacterial genomes. Strain Rd was chosen as the prototypic bacterium for complete genome sequencing as it has a genome size representative of other bacteria and a GϩC content close to that of the human genome. Additionally, at the time of sequencing, a physical map of the strain Rd genome did not exist, so this genome was a good test for the approach of shotgun sequencing, scaffolding, and assembly (34).Although strain Rd is the exemplar organism for the current small-genome sequencing rationale and an important model organism for studying H. influenzae biology, strain Rd is a poor model for the study of pathogenicity caused by members of the genus Haemophilus. Serotype b strains of H. influenzae cause invasive diseases, for example, meningitis, and nontypeable H. influenzae (NTHi) strains principally have a role in localized respiratory disease, particularly in otitis media, acute sinusitis, and community-acquired pneumonia and have important conseque...
This paper presents a method for the analysis of ranked data arising from completely randomized factorial designs. The procedure, which is an extension of the Kruskal-Wallis ranks test, allows for the calculation of interaction effects and linear contrasts. A Monte Carlo study of the convergence of the test and a worked example are presented.
Nontypeable Haemophilus influenzae (NTHi) is a gram-negative bacterium and a common commensal organism of the upper respiratory tract in humans. NTHi causes a number of diseases, including otitis media, sinusitis, conjunctivitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During the course of colonization and infection, NTHi must withstand oxidative stress generated by insult due to multiple reactive oxygen species produced endogenously by other copathogens and by host cells. Using an NTHi-specific microarray containing oligonucleotides representing the 1821 open reading frames of the recently sequenced NTHi isolate 86-028NP, we have identified 40 genes in strain 86-028NP that are upregulated after induction of oxidative stress due to hydrogen peroxide. Further comparisons between the parent and an isogenic oxyR mutant identified a subset of 11 genes that were transcriptionally regulated by OxyR, a global regulator of oxidative stress. Interestingly, hydrogen peroxide induced the OxyR-independent upregulation of expression of the genes encoding components of multiple iron utilization systems. This finding suggested that careful balancing of levels of intracellular iron was important for minimizing the effects of oxidative stress during NTHi colonization and infection and that there are additional regulatory pathways involved in iron utilization.In the evolution of life, a delicate physiological balance has arisen to compensate for both an organism's need for oxygen and the attendant lethal consequences of oxygen's toxicity. For example, in the electron transport chain, electrons can be inadvertently transferred from redox-active proteins to oxygen, producing reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ). The effects of ROS on cells can then be exacerbated by the presence of free iron which, via the Fenton reaction, can react with H 2 O 2 to produce more highly reactive hydroxyl radicals (34, 40, 52). Within a host, this problem is compounded by the release of extracellular ROS by phagocytes, which again, can have deleterious effects on invading pathogens (13). Thus, bacteria have evolved an array of increasingly well-defined mechanisms to abrogate the effects of oxidative stress. Proteins involved in such processes include catalase, which decomposes H 2 O 2 , and members of both the AhpCF/TsaA family of alkylhydroperoxidases and the organic hydroperoxide resistance proteins (Ohr) that decompose organic peroxides. Also, DNA-binding ferritin-like proteins (Dps) sequester free iron and bind to DNA, thus protecting DNA from damage (27,33,45,53,59,60,67). In addition, many bacterial species possess genes encoding OxyR, a global regulator of antioxidant defenses (24, 66).Protection against oxidative stress is especially important to nontypeable Haemophilus influenzae (NTHi). NTHi is one of three bacterial commensal organisms, the others being Streptococcus pneumoniae and Moraxella catarrhalis, which can ascend a virus-compromised eustachian tube and caus...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.