The syntheses of copper and silver delafossite-type oxides from their constituent binary metal oxides, oxide hydroxides and hydroxides, by low temperature (<210°C) and low pressure (<20 atm) hydrothermal reactions are described. Particular emphasis is placed on how the acid-base character of a constituent oxide determines its solubility and therefore whether a particular delafossite-type oxide can be synthesized, a strategy utilized by geologists and mineralogists to understand the conditions necessary for the synthesis of various minerals. Thus, the geochemical and corrosion science literature are shown to be useful in understanding the reaction conditions required for the syntheses of delafossite-type oxides and the relationship between reactant metal oxide acid-base character, solubility, aqueous speciation, and product formation. Manipulation of the key parameters, temperature, pressure, pH, and reactant solubility, results in broad families of phase-pure delafossite-type oxides in moderate to high yields for copper, CuBO 2 (B
Epitaxial La 2 NiMnO 6 thin films have been grown on (001)-orientated SrTiO 3 using the pulsed laser deposition technique. The thin films samples are semiconducting and ferromagnetic with a Curie temperature close to 270 K, a coercive field of 920 Oe, and a saturation magnetization of 5 µ B per formula unit. Transmission electron microscopy, conducted at room temperature, reveals a majority phase having "I-centered" structure with a ≈ c ≈ a sub 2 and b ≈ 2a sub along with minority phase domains having a "P-type" structure (a sub being the lattice parameter of the cubic perovskite structure). A discussion on the absence of Ni/Mn long-range ordering, in light of recent literature on the ordered double-perovskite La 2 NiMnO 6 is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.