Through the Evolvable Mars Campaign (EMC) study, the National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). A key aspect of these missions is the strategy that is employed to maintain and repair the spacecraft systems, ensuring that they continue to function and support the crew. Long duration missions beyond LEO present unique and severe maintainability challenges due to a variety of factors, including: limited to no opportunities for resupply, the distance from Earth, mass and volume constraints of spacecraft, high sensitivity of transportation element designs to variation in mass, the lack of abort opportunities to Earth, limited hardware heritage information, and the operation of human-rated systems in a radiation environment with little to no experience. The current approach to maintainability, as implemented on ISS, which includes a large number of spares pre-positioned on ISS, a larger supply sitting on Earth waiting to be flown to ISS, and an on demand delivery of logistics from Earth, is not feasible for future deep space human missions. For missions beyond LEO, significant modifications to the maintainability approach will be required.Through the EMC evaluations, several key findings related to the reliability and safety of the Mars spacecraft have been made. The nature of random and induced failures presents significant issues for deep space missions. Because spare parts cannot be flown as needed for Mars missions, all required spares must be flown with the mission or pre-positioned. These spares must cover all anticipated failure modes and provide a level of overall reliability and safety that is satisfactory for human missions. This will require a large amount of mass and volume be dedicated to storage and transport of spares for the mission. Further, there is, and will continue to be, a significant amount of uncertainty regarding failure rates for spacecraft components. This uncertainty makes it much more difficult to anticipate failures and will potentially require an even larger amount of spares to provide an acceptable level of safety. Ultimately, the approach to maintenance and repair applied to ISS, focusing on the supply of spare parts, may not be tenable for deep space missions. Other approaches, such as commonality of components, simplification of systems, and in-situ manufacturing will be required.
NASA's Constellation Program employs a strategic analysis methodology in providing an integrated analysis capability of Lunar exploration scenarios and to support strategic decision-making regarding those scenarios. The strategic analysis methodology integrates the assessment of the major contributors to strategic objective satisfaction -performance, affordability, and risk -and captures the linkages and feedbacks between all three components. Strategic analysis supports strategic decision making by senior management through comparable analysis of alternative strategies, provision of a consistent set of high level value metrics, and the enabling of cost-benefit analysis. The tools developed to implement the strategic analysis methodology are not element design and sizing tools. Rather, these models evaluate strategic performance using predefined elements, imported into a library from expert-driven design/sizing tools or expert analysis. Specific components of the strategic analysis tool set include scenario definition, requirements generation, mission manifesting, scenario lifecycle costing, crew time analysis, objective satisfaction benefit, risk analysis, and probabilistic evaluation. Results from all components of strategic analysis are evaluated a set of pre-defined figures of merit (FOMs). These FOMs capture the high-level strategic characteristics of all scenarios and facilitate direct comparison of options. The strategic analysis methodology that is described in this paper has previously been applied to the Space Shuttle and International Space Station Programs and is now being used to support the development of the baseline Constellation Program lunar architecture. This paper will present an overview of the strategic analysis methodology and will present sample results from the application of the strategic analysis methodology to the Constellation Program lunar architecture.
Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human spaceflight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability -defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems -will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human spaceflight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of proposed strategies for managing supportability is presented -including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares -along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human spaceflight.
On-orbit refueling of spacecraft has been proposed as an alternative to the exclusive use of Heavy-lift Launch Vehicles to enable human exploration beyond Low Earth Orbit (LEO). In these scenarios, beyond LEO spacecraft are launched dry (without propellant) or partially dry into orbit, using smaller or fewer element launch vehicles. Propellant is then launched into LEO on separate launch vehicles and transferred to the spacecraft. Refueling concepts are potentially attractive because they reduce the maximum individual payload that must be placed in Earth orbit. However, these types of approaches add significant complexity to mission operations and introduce more uncertainty and opportunities for failure to the mission. In order to evaluate these complex scenarios, the authors developed a Monte Carlo based discrete-event model that simulates the operational risks involved with such strategies, including launch processing delays, transportation system failures, and onorbit element lifetimes. This paper describes the methodology used to simulate the mission risks for refueling concepts, the strategies that were evaluated, and the results of the investigation. The results of the investigation show that scenarios that employ refueling concepts will likely have to include long launch and assembly timelines, as well as the use of spare tanker launch vehicles, in order to achieve high levels of mission success through Trans Lunar Injection. Acronyms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.