Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.
Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.
The role of wildland fire in the winter habitat use of caribou (Rangifer tarandus) has long been debated. Fire has been viewed as detrimental to caribou because it destroys the slow-growing climax forage lichens that caribou utilize in winter. Other researchers argued that caribou were not reliant on lichens and that fire may be beneficial, even in the short term. We evaluated the distribution of caribou relative to recent fires (<50 years old) within the current winter range of the Nelchina caribou herd in east-central Alaska. To address issues concerning independence and spatial and temporal scales, we used both conventional very high frequency and global positioning system telemetry to estimate caribou use relative to recent, known-aged burns. In addition, we used two methods to estimate availability of different habitat classes. Caribou used recently burned areas much less than expected, regardless of methodologies used. Moreover, within burns, caribou were more likely to use habitat within 500 m of the burn perimeter than core areas. Methods for determining use and availability did not have large influences on our measures of habitat selectivity.
Recent studies suggest that the growth and fecundity of northern ungulates may be coupled to their summer nutrition. Here, we compare summer dietary nitrogen availability of the five major browse plants (comprising approximately 79% of the diet) of moose (Alces alces) in Denali National Park and Nelchina Basin, Alaska, USA. In recent years the productivity of Denali moose has been significantly higher than that of Nelchina moose, prompting this comparison. We examined the phenological progression of leaf nitrogen concentration, tannin-protein precipitation capacity, and digestible protein over three summers in both regions. We then modeled the potential nutritional consequences for a cow moose consuming representative diets on each range, predicting both net protein intake (NPI) and lean body mass accumulation each year. We found that leaf nitrogen and digestible protein decreased, while tannin-protein precipitation capacity increased throughout the summer for all forages. There was 23% more digestible protein in Denali leaves than Nelchina leaves on average, and this difference was significant in all three years. Tannins accounted for a large (mean = 46%) reduction in protein availability, suggesting a key role of these secondary compounds in the nitrogen balance of moose in these regions. Finally, our NPI model predicted that Denali cows were in positive protein balance 17 days longer than Nelchina cows and accumulated 18 kg more lean body mass over the summer, on average. We conclude that summer dietary nitrogen availability may act as a nutritional constraint on moose and suggest that more emphasis be placed on elucidating its role in population dynamics and conservation of northern ungulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.