High-resolution mapping is an important step in the identification of complex disease genes. In outbred populations, linkage disequilibrium is expected to operate over short distances and could provide a powerful fine-mapping tool. Here we build on recently developed methods for linkage-disequilibrium mapping of quantitative traits to construct a general approach that can accommodate nuclear families of any size, with or without parental information. Variance components are used to construct a test that utilizes information from all available offspring but that is not biased in the presence of linkage or familiality. A permutation test is described for situations in which maximum-likelihood estimates of the variance components are biased. Simulation studies are used to investigate power and error rates of this approach and to highlight situations in which violations of multivariate normality assumptions warrant the permutation test. The relationship between power and the level of linkage disequilibrium for this test suggests that the method is well suited to the analysis of dense maps. The relationship between power and family structure is investigated, and these results are applicable to study design in complex disease, especially for late-onset conditions for which parents are usually not available. When parental genotypes are available, power does not depend greatly on the number of offspring in each family. Power decreases when parental genotypes are not available, but the loss in power is negligible when four or more offspring per family are genotyped. Finally, it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.
Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease (asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes. The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization of genes involved in many complex traits.
Preface Variation in gene expression is an important mechanism underlying susceptibility to complex disease. The simultaneous genome-wide assay of gene expression and genetic variation allows the mapping of the genetic factors that underpin individual differences in quantitative levels of expression (expression Quantitative Trait Loci, eQTL). The availability of systematically generated eQTL information may provide immediate insight into a biological base for disease associations identified through genome-wide association studies, and can help to identify networks of genes involved in disease pathogenesis. Although there are limitations to current eQTL maps, understanding of disease will be enhanced with novel technologies and international efforts that extend to a wide range of new samples and tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.