Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.entromere-associated protein-E (CENP-E; kinesin-7) is a kinetochore-associated kinesin motor protein with an essential and exclusive role in metaphase chromosome alignment and satisfaction of the mitotic checkpoint (1). CENP-E is a likely candidate to integrate the mechanics of kinetochore-microtubule interaction with the mitotic checkpoint signaling machinery responsible for restraining cell-cycle progression into anaphase. CENP-E is a large dimeric protein consisting of an N-terminal kinesin motor domain tethered to a globular C-terminal domain through an extended coiled-coil rod domain (2, 3). The C-terminal, noncatalytic region of CENP-E is not only sufficient to specify localization to kinetochores, but it also mediates interaction of CENP-E with the serine/threonine kinase BubR1, a key effector of mitotic checkpoint signaling that forms complexes with the checkpoint proteins Cdc20, Bub3, and Mad2 to inhibit the ubiquitin ligase activity of the anaphase promoting complex APC/C CDC20 (4-7). The combined interaction of CENP-E with microtubules and a key regulator of APC/C CDC20 has led to the hypothesis that CENP-E functions as the key kinetochore microtubule receptor responsible for silencing mitotic checkpoint signal transduction after capture of spindle microtubules. This hypothesis was further strengthened by the finding that CENP-E could stimulate the kinase activity of BubR1 in a microtubule-sensitive manner (8, 9). In vitro, the addition of CENP-E to BubR1 resulted in a stimulation of BubR1 kinase activity. The addition of microtubules suppressed this stimulatory activity, an effect thought to be mediated by the CENP-E kinesin motor domain. Although the importance of CENP-E interaction with BubR1 and the role of BubR1-mediated phosphorylation in mitotic checkpoint function remain unclear, CENP-E remains a prominent candidate to play a key role in mitotic checkpoint signal transduction.Depletion of CENP-E from ...
In contrast to other NF-kappaB activation pathways, the Drosophila IMD pathway is repressed by the ubiquitin-proteasome system. A possible target of this proteolytic activity is the Relish transcription factor, suggesting a mechanism for NF-kappaB downregulation in Drosophila.
Objective Interleukin-19 (IL-19) is putative Th2, anti-inflammatory interleukin. Its expression in, and potential role in atherogenesis is unknown. IL-19 is not detected in normal artery, and is expressed to a greater degree in plaque from symptomatic vs. asymptomatic patients, suggesting a compensatory-counter regulatory function. We tested if IL-19 could reduce atherosclerosis in susceptible mice, and identified plausible mechanisms. Approach and Results LDLR−/− mice fed an atherogenic diet and injected with either 1.0ng/g/day or 10.0ng/g/day rmIL-19 had significantly less plaque area in the aortic arch compared with controls (p<0.0001). Weight gain, cholesterol and triglyceride levels were not significantly different. Gene expression in splenocytes from IL-19 treated mice demonstrated immune cell Th2 polarization, with decreased expression of T-bet, IFNγ, IL-1β and IL-12β, and increased expression of GATA3 and FoxP3 mRNA. A greater percentage of lymphocytes were Th2 polarized in IL-19 treated mice. Cellular characterization of plaque by immunohistochemistry demonstrated IL-19 treated mice have significantly less macrophage infiltrate compared with controls (p<0.001). Intravital microscopy revealed significantly less leukocyte adhesion in wild-type mice injected with IL-19 and fed an atherogenic diet compared with controls. Treatment of cultured endothelial cells (EC), vascular smooth muscle cells (VSMC), and bone marrow-derived macrophages (BMDM) with IL-19 resulted in a significant decrease in chemokine mRNA, and in the mRNA-stability protein HuR. Conclusions These data suggest IL-19 is a potent inhibitor of experimental atherosclerosis, with diverse mechanisms including immune cell polarization, decrease in macrophage adhesion, and decrease in gene expression. This may identify IL-19 as a novel therapeutic to limit vascular inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.