Astract. Oxygen free radicals released during endotoxemia may contribute to the lung injury of the adult respiratory distress syndrome (ARDS). As this syndrome occurs frequently after gram-negative sepsis in humans, we studied the effect ofintravenous N-acetylcysteine (NAC), a free radical scavenger, upon the endotoxin (E)-induced model of ARDS in awake sheep. In vivo studies demonstrated that NAC attenuates the endotoxin-induced rise in pulmonary artery pressure (62±3 torr with E control vs. 43±3 torr for E + NAC), and markedly diminishes the rise in lymph flow at 1 h (8.5±1.2 vs 4.5±0.6 ml/15 min) and 4 h (5.0±0.6 vs. 3.3±0.4 ml/15 min), respectively, for E control vs. E + NAC. NAC also markedly attenuated the alterations in lung mechanics after endotoxemia. Dynamic compliance at 2 h after endotoxemia was 44±6% of base line for E vs. 76±10% of base line for E + NAC. Resistance to airflow across the lung at 1 h postendotoxin was 811±280% of base line for E vs. 391±233% of base line for E + NAC. NAC substantially reduced the 1 h postendotoxin rise in lymph concentrations of thromboxane B2 (8.29±3.28 vs. 2.75±1.93 ng/ ml for E vs. E + NAC) and 6-keto-prostaglandin-Fja (0.91±0.27 vs. 0.23±0.12 ng/ml for E vs. E + NAC). In addition, in vitro studies were performed which revealed NAC to be a potent free radical scavenger in both biologic and nonbiologic free radical generating systems. NAC decreased phorbol-stimulated granulocyte aggregation in a concentration-dependent manner in vitro. Minimal ef-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.