Scan conversion is required in order to display conventional B-mode ultrasonic signals, which are acquired along radii at varying angles, on standard Cartesian-coordinate video monitors. For real-time implementations, either nearest-neighbor or bilinear interpolation is usually used in scan conversion. If the sampling rate along each radius is high enough, however, the gray-scale value of a given pixel can be interpolated accurately using the nearest samples on two adjacent vectors. The required interpolation then reduces to linear interpolation. Oversampling by a factor of 2 along with linear interpolation was superior to bilinear interpolation of vectors sampled to match pixel-to-pixel spacing in 6 representative B-mode images. A novel 8-bit linear interpolation algorithm was implemented as a CMOS VLSI circuit using a readily available, high-level synthesis tool. The circuit performed 30 million interpolations per second. Arithmetic results produced by the 8-bit interpolator on 7-bit samples were virtually identical to IEEE-format, single-precision, floating-point results.
The Universal Serial Bus (USB) is now the ubiquitous interface bus of choice for connecting peripherals to personal computers and laptops. USB 2.0 is a half-duplex bus running at 480 Mb/s and each peripheral can draw as much as 500 mA of current at a nominal 5 V from the USB connector. We have developed a family of USB-based, B-mode probes that connect directly to a personal computer or laptop and that draw as little as 250 mA (1.25 W) when forming ten 5 MHz images/second. The pulser/receiver, high voltage supply, analog-to-digital converter, servo and USB interface are implemented on a small circuit board inside the probe body. After raw data are transferred to the computer, gain compensation, interpolation, filtering and other data processing are performed by the host processor. This gives flexibility to developers and allows enhancements to the system to be incorporated via software updates. In addition, the raw data are available for storage and later postprocessing. There are several advantages to this architectural approach to B-mode imaging, including low cost, portability and optimal signal-to-noise performance. This paper describes the advantages of the architecture of the probe family, discusses the hardware/software division of the required processing steps and presents example images from a 12.5 MHz ophthalmic probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.