A new model-based vision (MBV) algorithm is developed to find regions of interest (ROI's) corresponding to masses in digitized mammograms and to classify the masses as malignant/benign. The MBV algorithm is comprised of five modules to structurally identify suspicious ROI's, eliminate false positives, and classify the remaining as malignant or benign. The focus of attention module uses a difference of Gaussians (DoG) filter to highlight suspicious regions in the mammogram. The index module uses tests to reduce the number of nonmalignant regions from 8.39 to 2.36 per full breast image. Size, shape, contrast, and Laws texture features are used to develop the prediction module's mass models. Derivative-based feature saliency techniques are used to determine the best features for classification. Nine features are chosen to define the malignant/benign models. The feature extraction module obtains these features from all suspicious ROI's. The matching module classifies the regions using a multilayer perceptron neural network architecture to obtain an overall classification accuracy of 100% for the segmented malignant masses with a false-positive rate of 1.8 per full breast image. This system has a sensitivity of 92% for locating malignant ROI's. The database contains 272 images (12 b, 100 microm) with 36 malignant and 53 benign mass images. The results demonstrate that the MBV approach provides a structured order of integrating complex stages into a system for radiologists.
Derivative-based feature saliency techniques were used to define the best of 25 Laws texture features for the classification of 101 malignant mass and benign mass regions. Statistical and derivative-based saliency techniques were used to select the best size, shape, contrast, and Laws texture features for the mass model. Nine features were chosen to define the model, of which four have been used by other researchers. Using this model, the regions were classified using a multilayer perceptron neural network architecture trained with an imbalanced training set weight update algorithm to obtain an overall classification accuracy of 100 percent for the segmented malignant masses with a false-positive rate of 1.8/image. The system has shown a sensitivity of 92 percent for locating malignant ROTs. The database contained 284 images (12 bit, 100,am). SPIE Vol. 2760/313 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.