Soon after methicillin was introduced into clinical practice in the early 1960s, resistant strains of Staphylococcus aureus (MRSA) appeared, bearing a newly acquired resistance gene, mecA, that encodes a penicillin binding protein, PBP2a. MRSA have spread throughout the world, and an investigation of the clonality of 472 isolates by DNA hybridization was performed. All 472 isolates could be divided into six temporally ordered mecA hybridization patterns, and three of these were subdivided by the chromomosomal transposon Tn554. Each Tn554 pattern occurred in association with one and only one mecA pattern, suggesting that mecA divergence preceded the acquisition of Tn554 in all cases and therefore that mecA may have been acquired just once by S. aureus.
Podocytes are highly differentiated cells that play an important role in maintaining glomerular filtration barrier integrity; a function regulated by small GTPase proteins of the Rho family. To investigate the role of Rho A in podocyte biology, we created transgenic mice expressing doxycycline-inducible constitutively active (V14Rho) or dominant-negative Rho A (N19Rho) in podocytes. Specific induction of either Rho A construct in podocytes caused albuminuria and foot process effacement along with disruption of the actin cytoskeleton as evidenced by decreased expression of the actin associated protein synaptopodin. The mechanisms of these adverse effects, however, appeared to be different. Active V14Rho enhanced actin polymerization, caused a reduction in nephrin mRNA and protein levels, promoted podocyte apoptosis, and decreased endogenous Rho A levels. In contrast, the dominant-negative N19Rho caused a loss of podocyte stress fibers, did not alter the expression of either nephrin or Rho A, and did not cause podocyte apoptosis. Thus, our findings suggest that Rho A plays an important role in maintaining the integrity of the glomerular filtration barrier under basal conditions, but enhancement of Rho A activity above basal levels promotes podocyte injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.