The adaptability and productivity of cool-season food legumes (chickpea, faba bean, lentil, pea) are limited by major abiotic stresses including drought, heat, frost, chilling, waterlogging, salinity and mineral toxicities. The severity of these stresses is unpredictable in field experiments, so field trials are increasingly supplemented with controlledenvironment testing and physiological screening. For drought testing, irrigation is used in dry fields and rain-out shelters in damp ones. Carbon isotope discrimination ( 13 C) is a well-established screen for drought tolerance in C3 cereal crops which is now being validated for use in grain legumes, but it is relatively expensive per sample and more economical methods include stomatal conductance and canopy temperature. Chickpea lines ICC4958 and FLIP87-59C and faba bean line ILB938 have demonstrated good drought tolerance parameters in different experiments. For frost tolerance, an efficient controlled-environment procedure involves exposing hardened pot-grown plants to subzero temperatures. Faba beans Cote d'Or and BPL4628 as well as lentil ILL5865 have demonstrated good freezing tolerance in such tests. Chilling-tolerance tests are more commonly conducted in the field and lentil line ILL1878 as well as derivatives of interspecific crosses between chickpea and its wild relatives have repeatedly shown good results. The timing of chilling is particularly important as temperatures which are not lethal to the plant can greatly disrupt fertilization of flowers. Salinity response can be determined using hydroponic methods with a sand or gravel substrate and rapid, efficient scoring is based on leaf symptoms. Many lines of chickpea, faba bean and lentil have shown good salinity tolerance in a single article but none has become a benchmark. Waterlogging tolerance can be evaluated using paired hydroponic systems, one oxygenated and the other de-oxygenated. The development of lysigenous cavities or aerenchyma in roots, common in warm-season legumes, is reported in pea and lentil but is not well established in chickpea or faba bean. Many stresses are associated with oxidative damage leading to changes in chlorophyll fluorescence, membrane stability and peroxidase levels. An additional factor relevant to the legumes is the response of the symbiotic nitrogen-fixing bacteria to the stress.
SummaryAdaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation.We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus.One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Cosegregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.
Clovers (genus Trifolium) are widely cultivated across the world as forage legumes and make a large contribution to livestock feed production and soil improvement. Subterranean clover (T. subterraneum L.) is well suited for genomic and genetic studies as a reference species in the Trifolium genus, because it is an annual with a simple genome structure (autogamous and diploid), unlike the other economically important perennial forage clovers, red clover (T. pratense) and white clover (T. repens). This report represents the first draft genome sequence of subterranean clover. The 471.8 Mb assembled sequence covers 85.4% of the subterranean clover genome and contains 42,706 genes. Eight pseudomolecules of 401.1 Mb in length were constructed, based on a linkage map consisting of 35,341 SNPs. The comparative genomic analysis revealed that different clover chromosomes showed different degrees of conservation with other Papilionoideae species. These results provide a reference for genetic and genomic analyses in the genus Trifolium and new insights into evolutionary divergence in Papilionoideae species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.