The resistance of tissues to physical stress is dependent upon strong cell-cell adhesion in which desmosomes play a crucial role. We propose that desmosomes fulfil this function by adopting a more strongly adhesive state, hyper-adhesion, than other junctions. We show that the hyper-adhesive desmosomes in epidermis resist disruption by ethylene glycol bis(2-aminoethyl ether)-N,N,N′N′-tetraacetic acid (EGTA) and are thus independent of Ca2+. We propose that Ca2+ independence is the normal condition for tissue desmosomes. Ca2+ independence is associated with an organised arrangement of the intercellular adhesive material exemplified by a dense midline. When epidermis is wounded, desmosomes in the wound-edge epithelium lose hyper-adhesiveness and become Ca2+ dependent, i.e. readily dissociated by EGTA. Ca2+-dependent desmosomes lack a midline and show narrowing of the intercellular space. We suggest that this indicates a less-organised, weakly adhesive arrangement of the desmosomal cadherins, resembling classical cadherins in adherens junctions. Transition to Ca2+ dependence on wounding is accompanied by relocalisation of protein kinase C α to desmosomal plaques suggesting that an `inside-out' transmembrane signal is responsible for changing desmosomal adhesiveness. We model hyper-adhesive desmosomes using the crystal packing observed for the ectodomain of C-cadherin and show how the regularity of this 3D array provides a possible explanation for Ca2+ independence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.