Physicians, hospitals, and other health care facilities will assume the responsibility for aiding individuals injured by a terrorist act involving radioactive material. Scenarios have been developed for such acts that include a range of exposures resulting in few to many casualties. This consensus document was developed by the Strategic National Stockpile Radiation Working Group to provide a framework for physicians in internal medicine and the medical subspecialties to evaluate and manage large-scale radiation injuries. Individual radiation dose is assessed by determining the time to onset and severity of nausea and vomiting, decline in absolute lymphocyte count over several hours or days after exposure, and appearance of chromosome aberrations (including dicentrics and ring forms) in peripheral blood lymphocytes. Documentation of clinical signs and symptoms (affecting the hematopoietic, gastrointestinal, cerebrovascular, and cutaneous systems) over time is essential for triage of victims, selection of therapy, and assignment of prognosis. Recommendations based on radiation dose and physiologic response are made for treatment of the hematopoietic syndrome. Therapy includes treatment with hematopoietic cytokines; blood transfusion; and, in selected cases, stem-cell transplantation. Additional medical management based on the evolution of clinical signs and symptoms includes the use of antimicrobial agents (quinolones, antiviral therapy, and antifungal agents), antiemetic agents, and analgesic agents. Because of the strong psychological impact of a possible radiation exposure, psychosocial support will be required for those exposed, regardless of the dose, as well as for family and friends. Treatment of pregnant women must account for risk to the fetus. For terrorist or accidental events involving exposure to radioiodines, prophylaxis against malignant disease of the thyroid is also recommended, particularly for children and adolescents.
Exposures to doses of radiation of 1-10 Gy, defined in this workshop as moderate-dose radiation, may occur during the course of radiation therapy or as the result of radiation accidents or nuclear/radiological terrorism alone or in conjunction with bioterrorism. The resulting radiation injuries would be due to a series of molecular, cellular, tissue and whole-animal processes. To address the status of research on these issues, a broad-based workshop was convened. The specific recommendations were: (1) RESEARCH: Identify the key molecular, cellular and tissue pathways that lead from the initial molecular lesions to immediate and delayed injury. The latter is a chronic progressive process for which postexposure treatment may be possible. (2) Technology: Develop high-throughput technology for studying gene, protein and other biochemical expression after radiation exposure, and cytogenetic markers of radiation exposure employing rapid and accurate techniques for analyzing multiple samples. (3) Treatment strategies: Identify additional biological targets and develop effective treatments for radiation injury. (4) Ensuring sufficient expertise: Recruit and train investigators from such fields as radiation biology, cancer biology, molecular biology, cellular biology and wound healing, and encourage collaboration on interdisciplinary research on the mechanisms and treatment of radiation injury. Communicate knowledge of the effects of radiation exposure to the general public and to investigators, policy makers and agencies involved in response to nuclear accidents/events and protection/treatment of the general public.
BackgroundThere is a crucial shortage of methods capable of determining the extent of accidental exposures of human beings to ionizing radiation. However, knowledge of individual exposures is essential for early triage during radiological incidents to provide optimum possible life-sparing medical procedures to each person.Methods and FindingsWe evaluated immunocytofluorescence-based quantitation of γ-H2AX foci as a biodosimeter of total-body radiation exposure (60Co γ-rays) in a rhesus macaque (Macaca mulatta) model. Peripheral blood lymphocytes and plucked hairs were collected from 4 cohorts of macaques receiving total body irradiation doses ranging from 1 Gy to 8.5 Gy. Each cohort consisted of 6 experimental and 2 control animals. Numbers of residual γ-H2AX foci were proportional to initial irradiation doses and statistically significant responses were obtained until 1 day after 1 Gy, 4 days after 3.5 and 6.5 Gy, and 14 days after 8.5 Gy in lymphocytes and until 1 day after 1 Gy, at least 2 days after 3.5 and 6.5 Gy, and 9 days after 8.5 Gy in plucked hairs.ConclusionThese findings indicate that quantitation of γ-H2AX foci may make a robust biodosimeter for analyzing total-body exposure to ionizing radiation in humans. This tool would help clinicians prescribe appropriate types of medical intervention for optimal individual outcome. These results also demonstrate that the use of a high throughput γ-H2AX biodosimeter would be useful for days post-exposure in applications like large-scale radiological events or radiation therapy. In addition, this study validates a possibility to use plucked hair in future clinical trials investigating genotoxic effects of drugs and radiation treatments.
Mass spectrometry-based metabolomics has previously demonstrated utility for identifying biomarkers of ionizing radiation exposure in cellular, mouse and rat in vivo radiation models. To provide a valuable link from small laboratory rodents to humans, γ-radiation-induced urinary biomarkers were investigated using a nonhuman primate total-body-irradiation model. Mass spectrometry-based metabolomics approaches were applied to determine whether biomarkers could be identified, as well as the previously discovered rodent biomarkers of γ radiation. Ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry analysis was carried out on a time course of clean-catch urine samples collected from nonhuman primates (n = 6 per cohort) exposed to sham, 1.0, 3.5, 6.5 or 8.5 Gy doses of 60Co γ ray (~0.55 Gy/min) ionizing radiation. By multivariate data analysis, 13 biomarkers of radiation were discovered: N-acetyltaurine, isethionic acid, taurine, xanthine, hypoxanthine, uric acid, creatine, creatinine, tyrosol sulfate, 3-hydroxytyrosol sulfate, tyramine sulfate, N-acetylserotonin sulfate, and adipic acid. N-Acetyltaurine, isethionic acid, and taurine had previously been identified in rats, and taurine and xanthine in mice after ionizing radiation exposure. Mass spectrometry-based metabolomics has thus successfully revealed and verified urinary biomarkers of ionizing radiation exposure in the nonhuman primate for the first time, which indicates possible mechanisms for ionizing radiation injury.
The effective medical management of a suspected acute radiation overexposure incident necessitates recording dynamic medical data, measuring appropriate radiation bioassays, and estimating dose from dosimeters and radioactivity assessments in order to provide diagnostic information to the treating physician and a dose assessment for personnel radiation protection records. The accepted generic multiparameter and early-response approach includes measuring radioactivity and monitoring the exposed individual; observing and recording prodromal signs/symptoms and erythema; obtaining complete blood counts with white blood cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the "gold standard" dicentric assay (translocation assay for long times after exposure) for dose assessment; bioassay sampling, if appropriate, to determine radioactivity contamination; and using other available dosimetry approaches. In the event of a radiological mass-casualty incident, current national resources need to be enhanced to provide suitable dose assessment and medical triage and diagnoses. This capability should be broadly based and include stockpiling reagents and devices; establishing deployable (i.e., hematology and biodosimetry) laboratories and reference (i.e., cytogenetic biodosimetry, radiation bioassay) laboratories; networking qualified reference radioactivity-counting bioassay laboratories, cytogenetic biodosimetry, and deployable hematology laboratories with the medical responder community and national radiation protection program; and researching efforts to identify novel radiation biomarkers and develop applied biological dosimetry assays monitored with clinical, deployable, and hand-held analytical systems. These research and applied science efforts should ultimately contribute towards approved, regulated biodosimetry devices or diagnostic tests integrated into a national radioprotection program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.