Clustering ensembles have emerged as a powerful method for improving both the robustness as well as the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial, or statistical perspectives. This study extends previous research on clustering ensembles in several respects. First, we introduce a unified representation for multiple clusterings and formulate the corresponding categorical clustering problem. Second, we propose a probabilistic model of consensus using a finite mixture of multinomial distributions in a space of clusterings. A combined partition is found as a solution to the corresponding maximum-likelihood problem using the EM algorithm. Third, we define a new consensus function that is related to the classical intraclass variance criterion using the generalized mutual information definition. Finally, we demonstrate the efficacy of combining partitions generated by weak clustering algorithms that use data projections and random data splits. A simple explanatory model is offered for the behavior of combinations of such weak clustering components. Combination accuracy is analyzed as a function of several parameters that control the power and resolution of component partitions as well as the number of partitions. We also analyze clustering ensembles with incomplete information and the effect of missing cluster labels on the quality of overall consensus. Experimental results demonstrate the effectiveness of the proposed methods on several real-world data sets.
Clustering ensembles have emerged as a powerful method for improving both the robustness and the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial or statistical perspectives. We offer a probabilistic model of consensus using a finite mixture of multinomial distributions in a space of clusterings. A combined partition is found as a solution to the corresponding maximum likelihood problem using the EM algorithm. The excellent scalability of this algorithm and comprehensible underlying model are particularly important for clustering of large datasets. This study compares the performance of the EM consensus algorithm with other fusion approaches for clustering ensembles. We also analyze clustering ensembles with incomplete information and the effect of missing cluster labels on the quality of overall consensus. Experimental results demonstrate the effectiveness of the proposed method on large real-world datasets.
Advances in materials science and molecular biology followed rapidly from the ability to characterize atomic structure using single crystals. Structure determination is more difficult if single crystals are not available. Many complex inorganic materials that are of interest in nanotechnology have no periodic long-range order and so their structures cannot be solved using crystallographic methods. Here we demonstrate that ab initio structure solution of these nanostructured materials is feasible using diffraction data in combination with distance geometry methods. Precise, sub-ångström resolution distance data are experimentally available from the atomic pair distribution function (PDF). Current PDF analysis consists of structure refinement from reasonable initial structure guesses and it is not clear, a priori, that sufficient information exists in the PDF to obtain a unique structural solution. Here we present and validate two algorithms for structure reconstruction from precise unassigned interatomic distances for a range of clusters. We then apply the algorithms to find a unique, ab initio, structural solution for C60 from PDF data alone. This opens the door to sub-ångström resolution structure solution of nanomaterials, even when crystallographic methods fail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.