Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1–3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain–behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available—with a total sample size of around 50,000 individuals—to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain–phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.
Magnetic resonance imaging (MRI) continues to drive many important neuroscientific advances. However, progress in uncovering reproducible associations between individual differences in brain structure/function and behavioral phenotypes (e.g., cognition, mental health) may have been undermined by typical neuroimaging sample sizes (median N=25)1,2. Leveraging the Adolescent Brain Cognitive Development (ABCD) Study3 (N=11,878), we estimated the effect sizes and reproducibility of these brain wide associations studies (BWAS) as a function of sample size. The very largest, replicable brain wide associations for univariate and multivariate methods were r=0.14 and r=0.34, respectively. In smaller samples, typical for brain wide association studies, irreproducible, inflated effect sizes were ubiquitous, no matter the method (univariate, multivariate). Until sample sizes started to approach consortium levels, BWAS were underpowered and statistical errors assured. Multiple factors contribute to replication failures4,5,6; here, we show that the pairing of small brain behavioral phenotype effect sizes with sampling variability is a key element in widespread BWAS replication failure. Brain behavioral phenotype associations stabilize and become more reproducible with sample sizes of N>2,000. While investigator initiated brain behavior research continues to generate hypotheses and propel innovation, large consortia are needed to usher in a new era of reproducible human brain wide association studies.
Characterizing the nature of developmental change is critical to understanding the mechanisms that are impaired in complex neurodevelopment disorders such as autism spectrum disorder (ASD) and, pragmatically, may allow us to pinpoint periods of plasticity when interventions are particularly useful. Although aberrant brain development has long been theorized as a characteristic feature of ASD, the neural substrates have been difficult to characterize, in part due to a lack of developmental data and to performance confounds. To address these issues, we examined the development of intrinsic functional connectivity, with resting state fMRI from late childhood to early adulthood (8–36 years), using a seed based functional connectivity method with the striatal regions. Overall, we found that both groups show decreases in cortico-striatal circuits over age. However, when controlling for age, ASD participants showed increased connectivity with parietal cortex and decreased connectivity with prefrontal cortex relative to typically developed (TD) participants. In addition, ASD participants showed aberrant age-related connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g., fusiform gyrus, inferior and superior temporal gyri). In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing. Our findings highlight the need to identify the biological mechanisms of perturbations in brain reorganization over development, which may also help clarify discrepant findings in the literature.
Pioneering studies have shown that individual correlation measures from resting‐state functional magnetic resonance imaging studies can identify another scan from that same individual. This method is known as “connectotyping” or functional connectome “fingerprinting.” We analyzed a unique dataset of 12–30 years old (N = 140) individuals who had two distinct resting state scans on the same day and again 12–18 months later to assess the sensitivity and specificity of fingerprinting accuracy across different time scales (same day, ~1.5 years apart) and developmental periods (youths, adults). Sensitivity and specificity to identify one's own scan was high (average AUC = 0.94), although it was significantly higher in the same day (average AUC = 0.97) than 1.5‐years later (average AUC = 0.91). Accuracy in youths (average AUC = 0.93) was not significantly different from adults (average AUC = 0.96). Multiple statistical methods revealed select connections from the Frontoparietal, Default, and Dorsal Attention networks enhanced the ability to identify an individual. Identification of these features generalized across datasets and improved fingerprinting accuracy in a longitudinal replication data set (N = 208). These results provide a framework for understanding the sensitivity and specificity of fingerprinting accuracy in adolescents and adults at multiple time scales. Importantly, distinct features of one's “fingerprint” contribute to one's uniqueness, suggesting that cognitive and default networks play a primary role in the individualization of one's connectome.
Adolescence is increasingly viewed as a sensitive period in the development of substance use disorders (SUDs). Neurodevelopmental ‘dual-risk’ theories suggest adolescent vulnerability to problematic substance use is driven by an overactive reward drive mediated by the striatum, and poor cognitive control mediated by the prefrontal cortex. To this end, there has been a growing number of neuroimaging studies examining cognitive and affective neural systems during adolescence for markers of vulnerability to problematic substance use. Here, we perform a coordinate-based meta-analysis on this emerging literature. Twenty-two task-based voxelwise fMRI studies with activation differences associated with substance use vulnerability, representative of approximately 1092 subjects, were identified through a systematic literature search (PubMed, Scopus) and coordinates of activation differences (N = 190) were extracted. Adolescents were defined as ‘at-risk’ for problematic substance use based on a family history of SUD or through prospective prediction of substance use initiation or escalation. Multilevel kernel density analysis was used to identify the most consistent brain regions associated with adolescent substance use vulnerability. Across the included studies, substance use vulnerability was most reliably associated with activation differences in the striatum, where at-risk adolescents had hyper-activation in the dorsal subdivision (putamen). Follow-up analyses suggested striatal differences were driven by tasks sharing a motivational and/or reward component (e.g., monetary incentive) and common across subgroups of substance use risk (family history and prospective prediction studies). Analyses examining the role of psychiatric comorbidity revealed striatal activation differences were significantly more common in samples whose definition of substance use risk included cooccurring externalizing psychopathology. Furthermore, substance use risk meta-analytic results were no longer significant when excluding these studies, although this may reflect limitations in statistical power. No significant activation differences were observed in prefrontal cortex in any analysis. These results suggest striatal dysfunction, rather than prefrontal, may be a more primary neural feature of adolescent vulnerability to problematic substance use, possibly through a dimension of individual variability shared with externalizing psychopathology. However, our systematic literature search confirms this is still an emerging field. More studies, increased data sharing, and further quantitative integration are necessary for a comprehensive understanding of the neuroimaging markers of adolescent substance use risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.