Abstract-Optimizing the energy efficiency of mobile applications can greatly increase user satisfaction. However, developers lack viable techniques for estimating the energy consumption of their applications. This paper proposes a new approach that is both lightweight in terms of its developer requirements and provides fine-grained estimates of energy consumption at the code level. It achieves this using a novel combination of program analysis and per-instruction energy modeling. In evaluation, our approach is able to estimate energy consumption to within 10% of the ground truth for a set of mobile applications from the Google Play store. Additionally, it provides useful and meaningful feedback to developers that helps them to understand application energy consumption behavior.
The popularity of mobile apps continues to grow as developers take advantage of the sensors and data available on mobile devices. However, the increased functionality comes with a higher energy cost, which can cause a problem for users on battery constrained mobile devices. To improve the energy consumption of mobile apps, developers need detailed information about the energy consumption of their applications. Existing techniques have drawbacks that limit their usefulness or provide information at too high of a level of granularity, such as components or methods. Our approach is able to calculate source line level energy consumption information. It does this by combining hardware-based power measurements with program analysis and statistical modeling. Our empirical evaluation of the approach shows that it is fast and accurate.
A smartphone's display is one of its most energy consuming components. Modern smartphones use OLED displays that consume more energy when displaying light colors as opposed to dark colors. This is problematic as many popular mobile web applications use large light colored backgrounds.To address this problem we developed an approach for automatically rewriting web applications so that they generate more energy efficient web pages. Our approach is based on program analysis of the structure of the web application implementation. In the evaluation of our approach we show that it can achieve a 40% reduction in display power consumption. A user study indicates that the transformed web pages are acceptable to users with over 60% choosing to use the transformed pages for normal usage.
SQL injection attacks pose a serious threat to the security of Web applications because they can give attackers unrestricted access to databases that contain sensitive information. In this paper, we propose a new, highly automated approach for protecting existing Web applications against SQL injection. Our approach has both conceptual and practical advantages over most existing techniques. From the conceptual standpoint, the approach is based on the novel idea of positive tainting and the concept of syntax-aware evaluation. From the practical standpoint, our technique is at the same time precise and efficient and has minimal deployment requirements. The paper also describes WASP, a tool that implements our technique, and a set of studies performed to evaluate our approach. In the studies, we used our tool to protect several Web applications and then subjected them to a large and varied set of attacks and legitimate accesses. The evaluation was a complete success: WASP successfully and efficiently stopped all of the attacks without generating any false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.