Hexagonal boron nitride (h-BN) and semiconducting transition metal dichalcogenides (TMDs) promise greatly improved electrostatic control in future scaled electronic devices. To quantify the prospects of these materials in devices, we calculate the outof-plane and in-plane dielectric constant from first principles for TMDs in trigonal prismatic and octahedral coordination, as well as for h-BN, with a thickness ranging from monolayer and bilayer to bulk. Both the ionic and electronic contribution to the dielectric response are computed. Our calculations show that the out-of-plane dielectric response for the transition-metal dichalcogenides is dominated by its electronic component and that the dielectric constant increases with increasing chalcogen atomic number. Overall, the out-of-plane dielectric constant of the TMDs and h-BN increases by around 15% as the number of layers is increased from monolayer to bulk, while the in-plane component remains unchanged. Our computations also reveal that for octahedrally coordinated TMDs the ionic (static) contribution to the dielectric response is very high (4.5 times the electronic contribution) in the in-plane direction. This indicates that semiconducting TMDs in the tetragonal phase will suffer from excessive polar-optical scattering thereby deteriorating their electronic transport properties.
Physical-gap-channel graphene field effect transistor with high on/off current ratio for digital logic applications Appl. Phys. Lett. 101, 143102 (2012) Short channel mobility analysis of SiGe nanowire p-type field effect transistors: Origins of the strain induced performance improvement Appl. Phys. Lett. 101, 143502 (2012) Terahetz detection by heterostructed InAs/InSb nanowire based field effect transistors Development of high-performance fully depleted silicon-on-insulator based extended-gate field-effect transistor using the parasitic bipolar junction transistor effect Appl. Phys. Lett. 101, 133703 (2012) Abnormal interface state generation under positive bias stress in TiN/HfO2 p-channel metal-oxide-semiconductor field effect transistors
Metal-insulator transitions in low-dimensional materials under ambient conditions are rare and worth pursuing due to their intriguing physics and rich device applications. Monolayer MoTe2 and WTe2 are distinguished from other TMDs by the existence of an exceptional semimetallic distorted octahedral structure (T') with a quite small energy difference from the semiconducting H phase. In the process of transition metal alloying, an equal stability point of the H and the T' phase is observed in the formation energy diagram of monolayer WxMo1-xTe2. This thermodynamically driven phase transition enables a controlled synthesis of the desired phase (H or T') of monolayer WxMo1-xTe2 using a growth method such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). Furthermore, charge mediation, as a more feasible method, is found to make the T' phase more stable than the H phase and induce a phase transition from the H phase (semiconducting) to the T' phase (semimetallic) in monolayer WxMo1-xTe2 alloy. This suggests that a dynamic metal-insulator phase transition can be induced, which can be exploited for rich phase transition applications in two-dimensional nanoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.