In contrast to carbon-substituted isocyanates that are common building blocks, N-substituted isocyanates remain underdeveloped and reports on their N-acyl derivatives (i. e. amido-isocyanates) are exceedingly rare. Herein, amido-isocyanates were investigated in the context of syntheses of aza-tripeptide and hydantoins subunits starting from simple bench-stable precursors. A key finding is that the amido-isocyanate formed in situ cyclized to yield an oxadiazo-lone, and that under suitable reaction conditions this heterocycle is a traceless blocked (masked) N-isocyanate. Using organic bases as catalysts and upon heating, oxadiazolone formation is observed, and various nucleophiles to provide the desired aza-dipeptides or hydantoins in moderate to high yields. Further support for an amido-isocyanate intermediate was obtained using carboxylic acids as nucleophiles, affording N-acylhydrazide products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.