Human cardiovascular function can be characterized by steady-state measures of muscle sympathetic nerve activity, arterial pressure, R-R intervals and respiration. Additional information can be obtained from the study of the oscillations of these parameters, as they exist individually, and in relation to each other. The magnitude of oscillations can be gauged with frequency domain methods, including fast Fourier transformation and autoregressive modelling, and the coherence between these measures and their phase relations can be gauged with cross-spectral analysis. We closely examined haemodynamic and autonomic neural periodicities in a group of healthy young volunteers in order Journal of Physiology (1999) 1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min¢ (0·2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0·05-0·15 Hz) and respiratory-frequency (0·15-0·5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low-and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low-and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that ...
Hemorrhage is a leading cause of death in both civilian and battlefield trauma. Survival rates increase when victims requiring immediate intervention are correctly identified in a mass-casualty situation, but methods of prioritizing casualties based on current triage algorithms are severely limited. Development of effective procedures to predict the magnitude of hemorrhage and the likelihood for progression to hemorrhagic shock must necessarily be based on carefully controlled human experimentation, but controlled study of severe hemorrhage in humans is not possible. It may be possible to simulate hemorrhage, as many of the physiological compensations to acute hemorrhage can be mimicked in the laboratory by applying negative pressure to the lower extremities. Lower body negative pressure (LBNP) sequesters blood from the thorax into dependent regions of the pelvis and legs, effectively decreasing central blood volume in a similar fashion as acute hemorrhage. In this review, we compare physiological responses to hemorrhage and LBNP with particular emphasis on cardiovascular compensations that both share in common. Through evaluation of animal and human data, we present evidence that supports the hypothesis that LBNP, and resulting volume sequestration, is an effective technique to study physiological responses and mechanisms associated with acute hemorrhage in humans. Such experiments could lead to clinical algorithms that identify bleeding victims who will likely progress to hemorrhagic shock and require lifesaving intervention(s).
We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n ϭ 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n ϭ 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n ϭ 16) who underwent step changes in end-tidal PCO 2 (PETCO 2 ) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in PET CO 2 were positively related to coherence [LF:  ϭ 0.0065 arbitrary units (AU)/mmHg and VLF:  ϭ 0.011 AU/mmHg, both P Ͻ 0.01] and inversely related to phase (LF:  ϭ Ϫ0.026 rad/mmHg and VLF:  ϭ Ϫ0.018 rad/mmHg, both P Ͻ 0.01) and normalized gain (LF:  ϭ Ϫ0.042%/mmHg 2 and VLF:  ϭ Ϫ0.013%/mmHg 2 , both P Ͻ 0.01). However, PETCO 2 was positively associated with gain (LF:  ϭ 0.0070 cm·s
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.