Self-assembly processes of polyelectrolyte block copolymers are ubiquitous in industrial and biological processes; understanding their physical properties can also provide insights into the design of polyelectrolyte materials with novel and tailored properties. Here, we report systematic analysis on how the ionic strength of the solvent and the length of the polyelectrolyte block affect the self-assembly and morphology of the polyelectrolyte block copolymer materials by constructing a salt-dependent morphological phase diagram using an implicit solvent ionic strength (ISIS) method for dissipative particle dynamics (DPD) simulations. This diagram permits the determination of the conditions for the morphological transition into a specific shape, namely vesicles or lamellar aggregates, wormlike/cylindrical micelles, and spherical micelles. The scaling behavior for the size of spherical micelles is predicted, in terms of radius of gyration (R(g,m)) and thickness of corona (Hcorona), as a function of solvent ionic strength (c(s)) and polyelectrolyte length (NA), which are R(g,m) ∼ c(s)(-0.06)N(A)(0.54) and Hcorona ∼ c(s)(-0.11)N(A)(0.75). The simulation results were corroborated through AFM and static light scattering measurements on the example of the self-assembly of monodisperse, single-stranded DNA block-copolynucleotides (polyT50-b-F-dUTP). Overall, we were able to predict the salt-responsive morphology of polyelectrolyte materials in aqueous solution and show that a spherical-cylindrical-lamellar change in morphology can be obtained through an increase in solvent ionic strength or a decrease of polyelectrolyte length.
Herein, a new coarse-grained methodology for modeling and simulations of polyelectrolyte systems using implicit solvent ionic strength (ISIS) with dissipative particle dynamics (DPD) is presented. This ISIS model is based on mean-field theory approximation and the soft repulsive potential is used to reproduce the effect of solvent ionic strength. The capability of the ISIS model is assessed via two test cases: dynamics of a single long polyelectrolyte chain and the self-assembly of polyelectrolyte diblock copolymers in aqueous solutions with variable ionic strength. The results are in good agreement with previous experimental observations and theoretical predictions, which indicates that our polyelectrolyte model can be used to effectively and efficiently capture salt-dependent conformational features of large-scale polyelectrolyte systems in aqueous solutions, especially at the salt-dominated regime.
Cover: Morphological transformations of polyelectrolyte self‐assembled structures in aqueous solutions are identified in response to the change in solvent ionic strength, through the application of a newly developed implicit solvent ionic strength (ISIS) model for a dissipative particle dynamics (DPD) method. Further details can be found in the article by N. K. Li, W. H. Fuss, and Y. G. Yingling* http://doi.wiley.com/10.1002/mats.201400043.
A powerful tool for controlling interfacial properties and molecular architecture relies on the tailored adsorption of stimuli-responsive block copolymers onto surfaces. Here, we use computational and experimental approaches to investigate the adsorption behavior of thermally responsive polypeptide block copolymers (elastin-like polypeptides, ELPs) onto silica surfaces, and to explore the effects of surface affinity and micellization on the adsorption kinetics and the resultant polypeptide layers. We demonstrate that genetic incorporation of a silica-binding peptide (silaffin R5) results in enhanced adsorption of these block copolymers onto silica surfaces as measured by quartz crystal microbalance and ellipsometry. We find that the silaffin peptide can also direct micelle adsorption, leading to close-packed micellar arrangements that are distinct from the sparse, patchy arrangements observed for ELP micelles lacking a silaffin tag, as evidenced by atomic force microscopy measurements. These experimental findings are consistent with results of dissipative particle dynamics simulations. Wettability measurements suggest that surface immobilization hampers the temperature-dependent conformational change of ELP micelles, while adsorbed ELP unimers (i.e., unmicellized block copolymers) retain their thermally responsive property at interfaces. These observations provide guidance on the use of ELP block copolymers as building blocks for fabricating smart surfaces and interfaces with programmable architecture and functionality.
Front Cover: The responsiveness of polyelectrolyte block copolymers to ionic strength and/or pH allow for tuning the self‐assembly process and the resultant materials properties. As the salt increases, the polymer network can undergo a sharp morphological transition from micellar network to hamburger‐shaped aggregate, which is predicted using dissipative particle dynamics (DPD) simulations and cryogenic transmission electron microscopy (cryo‐TEM) on the example of the self‐assembly of single‐stranded DNA triblocks. Further details can be found in article number https://doi.org/10.1002/marc.201700422 by Yaroslava G. Yingling* and co‐workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.